organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-1-(3-metylbutano­yl)pyrimidine-2,4(1H,3H)-dione

aThe University of Iowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA, and bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 28 February 2008; accepted 6 March 2008; online 12 March 2008)

The 3-methyl­butanoyl group and the 5-fluoro­uracil unit of the title compound, C9H11FN2O3, are essentially coplanar, with the carbonyl group oriented towards the ring CH group and away from the nearer ring carbonyl group. The 3-methyl­butanoyl (C=)C—N—C=O torsion angle of 9.6 (2)° is comparable to that in structurally related compounds. In the solid state, two inversion-related mol­ecules form N—H⋯O hydrogen bonds to generate an inter­molecular R22(8) ring. The crystal structure also diplays intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For similar 5-fluoro­pyrimidine-2,4(1H,3H)-dione structures with N1-acyl substituents, see: Beall et al. (1993[Beall, H. D., Prankerd, R. J. & Sloan, K. B. (1993). Drug Dev. Ind. Pharm. 23, 517-525.]); Jiang et al. (1988[Jiang, A., Hu, S., Wang, Y. & Chen, Q. (1988). Gaodeng Xuexiao Huaxue Xuebao, 9, 307-309.]); Lehmler & Parkin (2000[Lehmler, H.-J. & Parkin, S. (2000). Acta Cryst. C56, e518-519.]); Lehmler & Parkin (2008[Lehmler, H.-J. & Parkin, S. (2008). Acta Cryst. E64, o617.]). For related literature, see: Roberts & Sloan (1999[Roberts, W. J. & Sloan, K. B. (1999). J. Pharm. Sci. 88, 515-522.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11FN2O3

  • Mr = 214.20

  • Triclinic, [P \overline 1]

  • a = 5.4879 (3) Å

  • b = 9.3702 (5) Å

  • c = 9.9794 (5) Å

  • α = 103.470 (2)°

  • β = 100.204 (3)°

  • γ = 104.085 (3)°

  • V = 468.94 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 90.0 (2) K

  • 0.30 × 0.20 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.963, Tmax = 0.991

  • 4080 measured reflections

  • 2139 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.112

  • S = 1.07

  • 2139 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.88 2.04 2.9091 (16) 171
Symmetry code: (i) -x-1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Despite their potential pharmaceutical application, the crystal structures of only five 1-acyl-5-fluorouracil derivatives have been described in the literature (Beall et al., 1993; Jiang et al., 1988; Lehmler & Parkin, 2000; Lehmler & Parkin, 2008). We herein describe the crystal structure of a new 1-acyl-5-fluorouracil derivative, 5-fluoro-1-(1-oxo-3-methylbutyl)-2,4(1H,3H)-pyrimidinedione.

The molecular structures of 1-acyl-5-fluorouracil derivatives are similar. The 1-acyl group and the 5-fluorouracil moiety are essentially coplanar, with the C7=O7 carbonyl group oriented towards the C6—H group and away from the C2=O2 group. The C6—N1—C7—O7 dihedral angle of the title compound is 9.6 (2)°. The other 1-acyl-5-fluorouracil derivatives have comparable dihedral angles ranging from 1.6° to 17.3° (Beall et al., 1993; Jiang et al., 1988; Lehmler & Parkin, 2000; Lehmler & Parkin, 2008), which suggests that the carbonyl group of the 1-acyl group and the pyrimidine-2,4(1H,3H)-dione moiety are conjugated. The differences in the dihedral angles are most likely due to packing effects in the crystal.

Similar to the crystal structure of other 1-acyl-5-fluorouracil derivatives (Beall et al., 1993; Lehmler & Parkin, 2000; Lehmler & Parkin, 2008), the crystal structure of the title compound contains inversion related molecules that form dimers in which two N—H···O hydrogen bonds generate an intermolecular R22(8) ring. Furthermore, there are C—H···O type intra and intermolecular interactions.

Related literature top

For similar 5-fluoropyrimidine-2,4(1H,3H)-dione structures with N1-acyl substituents, see: Beall et al. (1993); Jiang et al. (1988); Lehmler & Parkin (2000); Lehmler & Parkin (2008). For related literature, see: Roberts & Sloan (1999).

Experimental top

5-Fluoro-1-(1-oxo-3-methylbutyl)-2,4(1H,3H)-pyrimidinedione was synthesized by acylation of 5-fluorouracil with 3-methyl-butanoyl chloride and recrystallized from diethylether at -20°C (Beall et al., 1997; Lehmler & Parkin, 2000; Roberts & Sloan, 1999).

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 0.95 Å (CArH) and 0.88 Å (NH) with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
5-Fluoro-1-(3-metylbutanoyl)pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C9H11FN2O3Z = 2
Mr = 214.20F(000) = 224
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4879 (3) ÅCell parameters from 4363 reflections
b = 9.3702 (5) Åθ = 1.0–27.5°
c = 9.9794 (5) ŵ = 0.13 mm1
α = 103.470 (2)°T = 90 K
β = 100.204 (3)°Irregular block, colourless
γ = 104.085 (3)°0.30 × 0.20 × 0.07 mm
V = 468.94 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2139 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scans at fixed χ = 55°h = 77
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.963, Tmax = 0.991l = 1212
4080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.0466P]
where P = (Fo2 + 2Fc2)/3
2139 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C9H11FN2O3γ = 104.085 (3)°
Mr = 214.20V = 468.94 (4) Å3
Triclinic, P1Z = 2
a = 5.4879 (3) ÅMo Kα radiation
b = 9.3702 (5) ŵ = 0.13 mm1
c = 9.9794 (5) ÅT = 90 K
α = 103.470 (2)°0.30 × 0.20 × 0.07 mm
β = 100.204 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2139 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1629 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.031
4080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
2139 reflectionsΔρmin = 0.29 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0774 (2)0.62396 (13)0.89316 (12)0.0141 (3)
O20.2469 (2)0.74248 (12)0.89048 (11)0.0206 (3)
C20.1490 (3)0.65330 (17)0.82969 (16)0.0152 (3)
N30.2565 (2)0.56922 (13)0.68799 (12)0.0153 (3)
H30.39060.59110.64440.018*
O40.2928 (2)0.38819 (11)0.48195 (10)0.0189 (3)
C40.1798 (3)0.45604 (16)0.60712 (15)0.0157 (4)
F50.13171 (17)0.31908 (10)0.61287 (9)0.0218 (3)
C50.0440 (3)0.42855 (17)0.68495 (16)0.0155 (3)
C60.1651 (3)0.50812 (16)0.81867 (15)0.0152 (3)
H60.31300.48640.86460.018*
O70.3841 (2)0.64683 (11)1.08882 (11)0.0195 (3)
C70.2244 (3)0.70161 (17)1.03933 (15)0.0157 (4)
C80.1692 (3)0.84157 (17)1.12009 (15)0.0168 (4)
H8A0.00150.80991.14500.020*
H8B0.15340.90941.05840.020*
C90.3816 (3)0.93148 (18)1.25622 (16)0.0210 (4)
H90.43640.85641.30220.025*
C100.6162 (3)1.02656 (19)1.22141 (19)0.0308 (4)
H10A0.56571.10101.17650.046*
H10B0.68170.95861.15610.046*
H10C0.75221.08131.30920.046*
C110.2765 (3)1.03360 (19)1.35944 (16)0.0255 (4)
H11A0.41551.09361.44470.038*
H11B0.13490.96931.38640.038*
H11C0.21151.10341.31360.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0142 (7)0.0140 (6)0.0140 (7)0.0062 (5)0.0024 (5)0.0027 (5)
O20.0191 (6)0.0240 (6)0.0184 (6)0.0123 (5)0.0021 (5)0.0017 (5)
C20.0138 (8)0.0165 (8)0.0143 (8)0.0023 (6)0.0027 (6)0.0055 (6)
N30.0128 (7)0.0175 (7)0.0154 (7)0.0073 (6)0.0001 (5)0.0043 (5)
O40.0185 (6)0.0183 (6)0.0160 (6)0.0043 (5)0.0004 (5)0.0019 (5)
C40.0162 (9)0.0131 (8)0.0162 (8)0.0023 (6)0.0028 (6)0.0045 (6)
F50.0236 (6)0.0210 (5)0.0199 (5)0.0121 (4)0.0036 (4)0.0002 (4)
C50.0170 (8)0.0136 (7)0.0181 (8)0.0076 (6)0.0066 (6)0.0036 (6)
C60.0148 (8)0.0154 (8)0.0174 (8)0.0069 (6)0.0036 (6)0.0062 (6)
O70.0201 (6)0.0225 (6)0.0169 (6)0.0108 (5)0.0010 (5)0.0059 (5)
C70.0148 (9)0.0172 (8)0.0146 (8)0.0027 (7)0.0030 (6)0.0064 (6)
C80.0180 (9)0.0174 (8)0.0159 (8)0.0075 (7)0.0027 (6)0.0049 (6)
C90.0219 (9)0.0193 (8)0.0197 (9)0.0101 (7)0.0027 (7)0.0032 (7)
C100.0203 (10)0.0263 (10)0.0366 (11)0.0061 (8)0.0008 (8)0.0029 (8)
C110.0306 (10)0.0217 (9)0.0194 (9)0.0073 (8)0.0002 (7)0.0018 (7)
Geometric parameters (Å, º) top
N1—C61.4026 (18)C7—C81.499 (2)
N1—C21.4102 (19)C8—C91.530 (2)
N1—C71.4529 (18)C8—H8A0.9900
O2—C21.2053 (17)C8—H8B0.9900
C2—N31.3884 (18)C9—C101.522 (2)
N3—C41.3755 (19)C9—C111.526 (2)
N3—H30.8800C9—H91.0000
O4—C41.2300 (17)C10—H10A0.9800
C4—C51.445 (2)C10—H10B0.9800
F5—C51.3493 (16)C10—H10C0.9800
C5—C61.326 (2)C11—H11A0.9800
C6—H60.9500C11—H11B0.9800
O7—C71.2079 (17)C11—H11C0.9800
C6—N1—C2120.64 (12)C9—C8—H8A109.1
C6—N1—C7115.63 (12)C7—C8—H8B109.1
C2—N1—C7123.62 (12)C9—C8—H8B109.1
O2—C2—N3121.20 (14)H8A—C8—H8B107.9
O2—C2—N1124.36 (13)C10—C9—C11110.92 (13)
N3—C2—N1114.44 (13)C10—C9—C8110.36 (13)
C4—N3—C2128.19 (13)C11—C9—C8110.06 (13)
C4—N3—H3115.9C10—C9—H9108.5
C2—N3—H3115.9C11—C9—H9108.5
O4—C4—N3122.26 (14)C8—C9—H9108.5
O4—C4—C5125.01 (14)C9—C10—H10A109.5
N3—C4—C5112.73 (13)C9—C10—H10B109.5
C6—C5—F5120.63 (13)H10A—C10—H10B109.5
C6—C5—C4122.96 (14)C9—C10—H10C109.5
F5—C5—C4116.38 (12)H10A—C10—H10C109.5
C5—C6—N1120.82 (14)H10B—C10—H10C109.5
C5—C6—H6119.6C9—C11—H11A109.5
N1—C6—H6119.6C9—C11—H11B109.5
O7—C7—N1116.87 (13)H11A—C11—H11B109.5
O7—C7—C8123.93 (13)C9—C11—H11C109.5
N1—C7—C8119.20 (12)H11A—C11—H11C109.5
C7—C8—C9112.30 (13)H11B—C11—H11C109.5
C7—C8—H8A109.1
C6—N1—C2—O2174.10 (14)F5—C5—C6—N1178.82 (12)
C7—N1—C2—O21.8 (2)C4—C5—C6—N10.9 (2)
C6—N1—C2—N35.5 (2)C2—N1—C6—C53.1 (2)
C7—N1—C2—N3178.58 (12)C7—N1—C6—C5179.32 (13)
O2—C2—N3—C4174.94 (14)C6—N1—C7—O79.6 (2)
N1—C2—N3—C44.7 (2)C2—N1—C7—O7166.53 (13)
C2—N3—C4—O4179.30 (13)C6—N1—C7—C8171.17 (12)
C2—N3—C4—C51.1 (2)C2—N1—C7—C812.7 (2)
O4—C4—C5—C6177.69 (15)O7—C7—C8—C915.1 (2)
N3—C4—C5—C61.9 (2)N1—C7—C8—C9165.67 (13)
O4—C4—C5—F50.3 (2)C7—C8—C9—C1078.01 (16)
N3—C4—C5—F5179.92 (12)C7—C8—C9—C11159.23 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.882.042.9091 (16)171
Symmetry code: (i) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H11FN2O3
Mr214.20
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)5.4879 (3), 9.3702 (5), 9.9794 (5)
α, β, γ (°)103.470 (2), 100.204 (3), 104.085 (3)
V3)468.94 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4080, 2139, 1629
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.112, 1.07
No. of reflections2139
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.882.042.9091 (16)170.9
Symmetry code: (i) x1, y+1, z+1.
 

References

First citationBeall, H. D., Prankerd, R. J. & Sloan, K. B. (1993). Drug Dev. Ind. Pharm. 23, 517–525.  CrossRef Google Scholar
First citationJiang, A., Hu, S., Wang, Y. & Chen, Q. (1988). Gaodeng Xuexiao Huaxue Xuebao, 9, 307–309.  CAS Google Scholar
First citationLehmler, H.-J. & Parkin, S. (2000). Acta Cryst. C56, e518–519.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLehmler, H.-J. & Parkin, S. (2008). Acta Cryst. E64, o617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoberts, W. J. & Sloan, K. B. (1999). J. Pharm. Sci. 88, 515–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds