organic compounds
4-Bromophenyl benzoate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, Darmstadt, D-64287, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The structure of the title compound (4BPBA), C13H9BrO2, is similar to that of phenyl benzoate (PBA), 4-methylphenyl benzoate (4MePBA) and 4-methoxyphenyl benzoate, with somewhat different bond parameters. The dihedral angle between the phenyl and benzoyl rings in 4BPBA is 58.43 (17)°, compared with values of 55.7° in PBA and 60.17 (7)° in 4MPBA. The molecules in the title compound are packed into infinite chains in the a-axis direction.
Related literature
For related literature, see: Adams & Morsi (1976); Gowda, Foro, Babitha & Fuess (2007); Gowda, Foro, Nayak & Fuess (2007); Nayak & Gowda (2008).
Experimental
Crystal data
|
Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808008167/om2221sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808008167/om2221Isup2.hkl
The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.
The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93 Å) with Uiso = 1.2 Ueq of the parent atom.
The residual electron-density features are located in the region of Br1. The highest peak is 0.91 Å from C4 and deepest hole is 0.78 Å from Br1.
Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell
CAD-4-PC Software (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C13H9BrO2 | F(000) = 552 |
Mr = 277.11 | Dx = 1.584 Mg m−3 |
Orthorhombic, Pca21 | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: P 2c -2ac | Cell parameters from 25 reflections |
a = 7.748 (1) Å | θ = 9.9–23.4° |
b = 5.5946 (7) Å | µ = 4.67 mm−1 |
c = 26.814 (5) Å | T = 299 K |
V = 1162.3 (3) Å3 | Plate, colourless |
Z = 4 | 0.38 × 0.30 × 0.08 mm |
Enraf–Nonius CAD-4 diffractometer | 1252 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.039 |
Graphite monochromator | θmax = 66.9°, θmin = 3.3° |
ω/2θ scans | h = −1→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→6 |
Tmin = 0.242, Tmax = 0.685 | l = −8→32 |
1986 measured reflections | 3 standard reflections every 120 min |
1442 independent reflections | intensity decay: 2.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.189 | w = 1/[σ2(Fo2) + (0.1268P)2 + 0.565P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max = 0.001 |
1442 reflections | Δρmax = 1.04 e Å−3 |
145 parameters | Δρmin = −1.32 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with 375 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (6) |
C13H9BrO2 | V = 1162.3 (3) Å3 |
Mr = 277.11 | Z = 4 |
Orthorhombic, Pca21 | Cu Kα radiation |
a = 7.748 (1) Å | µ = 4.67 mm−1 |
b = 5.5946 (7) Å | T = 299 K |
c = 26.814 (5) Å | 0.38 × 0.30 × 0.08 mm |
Enraf–Nonius CAD-4 diffractometer | 1252 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.039 |
Tmin = 0.242, Tmax = 0.685 | 3 standard reflections every 120 min |
1986 measured reflections | intensity decay: 2.0% |
1442 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.189 | Δρmax = 1.04 e Å−3 |
S = 1.15 | Δρmin = −1.32 e Å−3 |
1442 reflections | Absolute structure: Flack (1983), with 375 Friedel pairs |
145 parameters | Absolute structure parameter: −0.04 (6) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.29159 (16) | 0.2659 (2) | −0.12742 (8) | 0.0950 (5) | |
O1 | 0.4692 (6) | 0.1882 (9) | 0.0901 (2) | 0.0581 (13) | |
O2 | 0.3231 (11) | 0.5195 (14) | 0.1104 (3) | 0.107 (3) | |
C1 | 0.4260 (8) | 0.2190 (10) | 0.0403 (3) | 0.0463 (14) | |
C2 | 0.4854 (8) | 0.4121 (12) | 0.0127 (3) | 0.0544 (16) | |
H2 | 0.5500 | 0.5321 | 0.0278 | 0.065* | |
C3 | 0.4478 (8) | 0.4229 (12) | −0.0367 (3) | 0.0560 (17) | |
H3 | 0.4888 | 0.5492 | −0.0559 | 0.067* | |
C4 | 0.3474 (11) | 0.2440 (12) | −0.0586 (3) | 0.0559 (17) | |
C5 | 0.2920 (9) | 0.0437 (12) | −0.0313 (3) | 0.0589 (18) | |
H5 | 0.2301 | −0.0794 | −0.0462 | 0.071* | |
C6 | 0.3332 (9) | 0.0389 (13) | 0.0176 (3) | 0.0583 (17) | |
H6 | 0.2977 | −0.0908 | 0.0368 | 0.070* | |
C7 | 0.4106 (9) | 0.3510 (14) | 0.1226 (3) | 0.0577 (17) | |
C8 | 0.4601 (9) | 0.2976 (12) | 0.1748 (3) | 0.0521 (15) | |
C9 | 0.5527 (8) | 0.0900 (13) | 0.1879 (3) | 0.0585 (17) | |
H9 | 0.5846 | −0.0209 | 0.1638 | 0.070* | |
C10 | 0.5943 (10) | 0.0558 (13) | 0.2368 (4) | 0.0644 (19) | |
H10 | 0.6544 | −0.0820 | 0.2454 | 0.077* | |
C11 | 0.5530 (10) | 0.2107 (14) | 0.2731 (4) | 0.0627 (19) | |
H11 | 0.5834 | 0.1803 | 0.3060 | 0.075* | |
C12 | 0.4636 (9) | 0.4180 (14) | 0.2604 (3) | 0.0602 (17) | |
H12 | 0.4353 | 0.5284 | 0.2851 | 0.072* | |
C13 | 0.4164 (9) | 0.4607 (13) | 0.2112 (3) | 0.0585 (16) | |
H13 | 0.3558 | 0.5985 | 0.2029 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.1056 (8) | 0.1322 (9) | 0.0472 (6) | 0.0167 (6) | −0.0058 (7) | −0.0056 (7) |
O1 | 0.053 (2) | 0.064 (3) | 0.058 (3) | 0.008 (2) | −0.003 (2) | −0.011 (3) |
O2 | 0.145 (6) | 0.117 (5) | 0.059 (4) | 0.089 (5) | 0.005 (4) | 0.001 (4) |
C1 | 0.044 (3) | 0.047 (3) | 0.049 (4) | 0.003 (2) | −0.001 (3) | −0.003 (3) |
C2 | 0.046 (3) | 0.052 (3) | 0.066 (5) | −0.007 (3) | 0.004 (3) | −0.009 (3) |
C3 | 0.055 (3) | 0.052 (3) | 0.061 (5) | 0.007 (3) | 0.011 (3) | 0.005 (3) |
C4 | 0.058 (4) | 0.067 (4) | 0.042 (4) | 0.006 (3) | 0.005 (4) | −0.006 (3) |
C5 | 0.062 (4) | 0.049 (3) | 0.066 (5) | −0.004 (3) | −0.005 (4) | −0.006 (3) |
C6 | 0.054 (3) | 0.058 (4) | 0.063 (5) | −0.012 (3) | 0.002 (4) | 0.010 (4) |
C7 | 0.050 (3) | 0.068 (4) | 0.055 (4) | 0.019 (3) | 0.004 (3) | 0.002 (4) |
C8 | 0.051 (3) | 0.055 (3) | 0.050 (4) | −0.005 (3) | 0.006 (3) | −0.001 (3) |
C9 | 0.053 (3) | 0.062 (3) | 0.061 (4) | 0.017 (3) | −0.004 (3) | −0.010 (4) |
C10 | 0.057 (3) | 0.062 (4) | 0.074 (5) | 0.007 (3) | −0.008 (4) | 0.015 (4) |
C11 | 0.056 (3) | 0.082 (5) | 0.050 (5) | −0.001 (3) | −0.002 (3) | 0.003 (4) |
C12 | 0.064 (4) | 0.065 (4) | 0.052 (4) | −0.007 (3) | 0.005 (4) | −0.002 (4) |
C13 | 0.056 (3) | 0.059 (4) | 0.060 (4) | 0.010 (3) | −0.003 (3) | 0.001 (3) |
Br1—C4 | 1.899 (9) | C6—H6 | 0.9300 |
O1—C7 | 1.340 (10) | C7—C8 | 1.481 (12) |
O1—C1 | 1.388 (10) | C8—C13 | 1.379 (11) |
O2—C7 | 1.206 (9) | C8—C9 | 1.410 (10) |
C1—C6 | 1.379 (10) | C9—C10 | 1.364 (12) |
C1—C2 | 1.388 (10) | C9—H9 | 0.9300 |
C2—C3 | 1.356 (12) | C10—C11 | 1.342 (12) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.398 (11) | C11—C12 | 1.392 (11) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.406 (11) | C12—C13 | 1.390 (12) |
C5—C6 | 1.351 (12) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C7—O1—C1 | 117.4 (5) | O2—C7—C8 | 124.1 (7) |
C6—C1—C2 | 120.4 (8) | O1—C7—C8 | 112.9 (6) |
C6—C1—O1 | 117.3 (6) | C13—C8—C9 | 119.5 (8) |
C2—C1—O1 | 122.0 (6) | C13—C8—C7 | 118.2 (6) |
C3—C2—C1 | 118.9 (6) | C9—C8—C7 | 122.2 (7) |
C3—C2—H2 | 120.5 | C10—C9—C8 | 118.4 (7) |
C1—C2—H2 | 120.5 | C10—C9—H9 | 120.8 |
C2—C3—C4 | 119.9 (7) | C8—C9—H9 | 120.8 |
C2—C3—H3 | 120.1 | C11—C10—C9 | 123.4 (7) |
C4—C3—H3 | 120.1 | C11—C10—H10 | 118.3 |
C3—C4—C5 | 121.4 (8) | C9—C10—H10 | 118.3 |
C3—C4—Br1 | 119.3 (6) | C10—C11—C12 | 118.7 (8) |
C5—C4—Br1 | 119.2 (6) | C10—C11—H11 | 120.7 |
C6—C5—C4 | 116.7 (7) | C12—C11—H11 | 120.7 |
C6—C5—H5 | 121.6 | C13—C12—C11 | 120.4 (8) |
C4—C5—H5 | 121.6 | C13—C12—H12 | 119.8 |
C5—C6—C1 | 122.4 (7) | C11—C12—H12 | 119.8 |
C5—C6—H6 | 118.8 | C8—C13—C12 | 119.6 (7) |
C1—C6—H6 | 118.8 | C8—C13—H13 | 120.2 |
O2—C7—O1 | 123.0 (8) | C12—C13—H13 | 120.2 |
C7—O1—C1—C6 | −120.1 (7) | C1—O1—C7—C8 | 178.5 (6) |
C7—O1—C1—C2 | 65.4 (9) | O2—C7—C8—C13 | −5.8 (12) |
C6—C1—C2—C3 | 1.3 (10) | O1—C7—C8—C13 | 175.9 (6) |
O1—C1—C2—C3 | 175.6 (6) | O2—C7—C8—C9 | 175.6 (9) |
C1—C2—C3—C4 | 1.4 (10) | O1—C7—C8—C9 | −2.7 (10) |
C2—C3—C4—C5 | −3.8 (10) | C13—C8—C9—C10 | 0.9 (10) |
C2—C3—C4—Br1 | 178.5 (5) | C7—C8—C9—C10 | 179.5 (7) |
C3—C4—C5—C6 | 3.2 (10) | C8—C9—C10—C11 | −0.6 (12) |
Br1—C4—C5—C6 | −179.1 (6) | C9—C10—C11—C12 | −0.3 (12) |
C4—C5—C6—C1 | −0.5 (11) | C10—C11—C12—C13 | 0.9 (11) |
C2—C1—C6—C5 | −1.8 (11) | C9—C8—C13—C12 | −0.3 (11) |
O1—C1—C6—C5 | −176.4 (7) | C7—C8—C13—C12 | −178.9 (7) |
C1—O1—C7—O2 | 0.2 (12) | C11—C12—C13—C8 | −0.6 (11) |
Experimental details
Crystal data | |
Chemical formula | C13H9BrO2 |
Mr | 277.11 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 299 |
a, b, c (Å) | 7.748 (1), 5.5946 (7), 26.814 (5) |
V (Å3) | 1162.3 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.67 |
Crystal size (mm) | 0.38 × 0.30 × 0.08 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.242, 0.685 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1986, 1442, 1252 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.189, 1.15 |
No. of reflections | 1442 |
No. of parameters | 145 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.04, −1.32 |
Absolute structure | Flack (1983), with 375 Friedel pairs |
Absolute structure parameter | −0.04 (6) |
Computer programs: CAD-4-PC Software (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions to his research fellowship.
References
Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Enraf–Nonius (1996). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of 4-bromophenyl benzoate (4BPBA) has been determined, as part of a study of substituent effects on the structures of industrially significant compounds (Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The structure of 4BPBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 4-methylphenyl benzoate (4MePBA), 4-methoxyphenyl benzoate (4MeOPBA), 3-methylphenyl benzoate (3MePBA), 2,3-dichlorophenyl benzoate (23DCPBA) and other aryl benzoates (Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The bond parameters in 4BPBA are similar to those in PBA, 4MePBA, 4MeOPBA, 3MePBA, 23DCPBA and other benzoates (Adams & Morsi, 1976; Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The molecules in the title compound are packed into chains in the bc plane (Fig. 2).