organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Propyl-4H-thia­zolo[3,2-a][1,3,5]triazine-4-thione

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
*Correspondence e-mail: uzma_yunus@yahoo.com

(Received 27 February 2008; accepted 11 March 2008; online 20 March 2008)

In the title compound, C8H9N3S2, the n-propyl chain is disordered over two orientations (site-occupancy ratio = 0.522:0.478) and is roughly perpendicular to the fused thia­zolotriazine system. The angle between the fused ring and the propyl chain is 83.6 (1)° [ 82.2 (1)° for the disordered chain]. The structure is stabilized by C—H⋯N hydrogen bonds.

Related literature

For related literature, see: Jiang et al. (2007[Jiang, Y.-P., Qiu, T., Wang, L.-E. & Wang, J.-N. (2007). Acta Cryst. E63, o3096.]); Pauling et al. (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.]); Yunus et al. (2007[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3S2

  • Mr = 211.32

  • Monoclinic, P 21 /c

  • a = 9.3240 (7) Å

  • b = 14.9973 (11) Å

  • c = 6.8063 (5) Å

  • β = 95.505 (1)°

  • V = 947.37 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 173 (2) K

  • 0.32 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.895

  • 5571 measured reflections

  • 2254 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.05

  • 2254 reflections

  • 161 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N2i 0.95 2.38 3.3261 (16) 171
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have previously reported the crystal structure of 2-phenyl-4H-thiazolo[3,2,-a]- [1,3,5]triazine-4-thione with a phenyl group attached to the 1,3,5-triazine ring (Yunus et al., 2007). The molecule was essentially planar. In contrast, in the title compound the pendant n-propyl group is almost perpendicular to the fused thiazolo[3,2,-a][1,3,5]triazine ring, which are themselves co-planar (maximum deviation from mean plane is 0.0437 (1) Å from atom C4). The n-propyl chain is disordered over two orientations with a site occupancy ratio of 0.522:0.478 (Jiang et al., 2007). The CN bond distances of the 1,3,5-triazine ring are in the range 1.3191 (15) to 1.4093 (14) Å, in which N1—C5 bond length is slightly longer than that of N2—C5. These values are intermediate between those expected for single and double C—N bonds (1.47 and 1.27 Å, respectively). The C=S bond length of 1.6686 (12) Å is similar to that of the phenyl analog (Yunus et al., 2007) but is slightly longer then the pure double bond distance (1.61 Å) (Pauling 1960). The bond angles and bond lengths in the thiazole ring are within the normal ranges. The crystal structure is stabilized by weak C—H···N hydrogen bonding interactions.

Related literature top

For related literature, see: Jiang et al. (2007); Pauling et al. (1960); Yunus et al. (2007).

Experimental top

A mixture of ammonium thiocyanate (26 mmol) and butyryl chloride (26 mmol) in dry acetone (60 ml) was stirred for 30 min. Then 2-aminothiazole (26 mmol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured into acidified cold water. The resulting yellow solid was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from acetonitrile.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (RCH3), 0.99 Å (R2CH2) and 0.95 Å (CArH) with Uiso(H) values set to either 1.5Ueq (RCH3) or 1.2Ueq of the attached C atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : A view of the molecular structure. Displacement ellipsoids are drawn at the 50% probability level.
2-Propyl-4H-thiazolo[3,2-a][1,3,5]triazine-4-thione top
Crystal data top
C8H9N3S2F(000) = 440
Mr = 211.32Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5571 reflections
a = 9.3240 (7) Åθ = 2.6–28.3°
b = 14.9973 (11) ŵ = 0.52 mm1
c = 6.8063 (5) ÅT = 173 K
β = 95.505 (1)°Block, pale yellow
V = 947.37 (12) Å30.32 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω and ϕ scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.853, Tmax = 0.895k = 1914
5571 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.2601P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2254 reflectionsΔρmax = 0.32 e Å3
161 parametersΔρmin = 0.29 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (12)
Crystal data top
C8H9N3S2V = 947.37 (12) Å3
Mr = 211.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3240 (7) ŵ = 0.52 mm1
b = 14.9973 (11) ÅT = 173 K
c = 6.8063 (5) Å0.32 × 0.25 × 0.22 mm
β = 95.505 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2077 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.895Rint = 0.016
5571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0245 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2254 reflectionsΔρmin = 0.29 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.20093 (3)0.710163 (18)0.27470 (4)0.02095 (10)
S20.15462 (3)0.443002 (19)0.21702 (4)0.02265 (10)
N10.04853 (10)0.56884 (6)0.25767 (13)0.01739 (19)
N20.12868 (11)0.42185 (7)0.29852 (15)0.0235 (2)
N30.29929 (11)0.54164 (7)0.31895 (15)0.0231 (2)
C10.01557 (13)0.71890 (8)0.23196 (17)0.0224 (2)
H10.03440.77390.21430.027*
C20.04951 (12)0.63902 (8)0.22664 (17)0.0211 (2)
H20.15080.63110.20430.025*
C30.18861 (12)0.59613 (7)0.28536 (15)0.0185 (2)
C50.01588 (12)0.47711 (7)0.25939 (15)0.0187 (2)
C40.26174 (14)0.45502 (8)0.32834 (18)0.0259 (3)0.522 (4)
C60.3713 (6)0.3883 (4)0.4050 (7)0.0221 (9)0.522 (4)
H6A0.32880.32780.40030.029 (8)*0.522 (4)
H6B0.40620.40220.54360.025 (7)*0.522 (4)
C70.4958 (2)0.39267 (16)0.2751 (4)0.0248 (6)0.522 (4)
H7A0.53570.45390.27990.021 (7)*0.522 (4)
H7B0.57300.35170.32920.036 (8)*0.522 (4)
C80.4516 (9)0.3679 (6)0.0614 (6)0.0357 (13)0.522 (4)
H8A0.53570.37140.01430.030 (8)*0.522 (4)
H8B0.37730.40930.00550.045 (10)*0.522 (4)
H8C0.41340.30700.05520.061 (12)*0.522 (4)
C4A0.26174 (14)0.45502 (8)0.32834 (18)0.0259 (3)0.478 (4)
C6A0.3938 (7)0.3911 (4)0.3487 (8)0.0255 (12)0.478 (4)
H6A10.48270.42760.36210.047 (11)*0.478 (4)
H6A20.39130.35650.47220.038 (11)*0.478 (4)
C7A0.4034 (3)0.32554 (16)0.1781 (4)0.0247 (7)0.478 (4)
H7A10.47360.27810.21990.036 (9)*0.478 (4)
H7A20.30830.29700.14610.037 (9)*0.478 (4)
C8A0.4491 (8)0.3709 (6)0.0056 (8)0.0320 (11)0.478 (4)
H8A10.45830.32630.10870.064 (14)*0.478 (4)
H8A20.54200.40070.02630.061 (13)*0.478 (4)
H8A30.37640.41520.05280.030 (9)*0.478 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02618 (16)0.01417 (15)0.02233 (16)0.00294 (10)0.00150 (11)0.00001 (9)
S20.02469 (16)0.01845 (15)0.02542 (16)0.00432 (10)0.00559 (11)0.00188 (10)
N10.0225 (4)0.0139 (4)0.0155 (4)0.0004 (3)0.0008 (3)0.0001 (3)
N20.0307 (5)0.0151 (4)0.0231 (5)0.0010 (4)0.0059 (4)0.0003 (4)
N30.0254 (5)0.0183 (5)0.0243 (5)0.0009 (4)0.0051 (4)0.0020 (4)
C10.0273 (6)0.0166 (5)0.0236 (6)0.0020 (4)0.0037 (4)0.0001 (4)
C20.0235 (5)0.0172 (5)0.0226 (5)0.0024 (4)0.0029 (4)0.0003 (4)
C30.0247 (5)0.0157 (5)0.0147 (5)0.0022 (4)0.0000 (4)0.0010 (4)
C50.0280 (5)0.0148 (5)0.0130 (5)0.0015 (4)0.0010 (4)0.0015 (4)
C40.0301 (6)0.0183 (5)0.0266 (6)0.0025 (4)0.0106 (5)0.0023 (4)
C60.0217 (16)0.0211 (14)0.023 (2)0.0022 (11)0.0009 (16)0.0060 (18)
C70.0159 (11)0.0253 (12)0.0332 (13)0.0029 (8)0.0023 (9)0.0008 (9)
C80.0347 (17)0.039 (2)0.034 (3)0.0051 (15)0.006 (3)0.009 (3)
C4A0.0301 (6)0.0183 (5)0.0266 (6)0.0025 (4)0.0106 (5)0.0023 (4)
C6A0.032 (3)0.0196 (16)0.023 (3)0.0051 (16)0.0085 (19)0.0019 (19)
C7A0.0224 (11)0.0180 (12)0.0337 (15)0.0042 (9)0.0030 (10)0.0003 (10)
C8A0.0268 (16)0.0325 (18)0.038 (3)0.0014 (13)0.009 (3)0.004 (3)
Geometric parameters (Å, º) top
S1—C31.7161 (11)C6—H6B0.9900
S1—C11.7299 (13)C7—C81.519 (5)
S2—C51.6686 (12)C7—H7A0.9900
N1—C31.3644 (14)C7—H7B0.9900
N1—C21.3967 (14)C8—H8A0.9800
N1—C51.4093 (14)C8—H8B0.9800
N2—C41.3340 (16)C8—H8C0.9800
N2—C51.3455 (15)C6A—C7A1.531 (6)
N3—C31.3191 (15)C6A—H6A10.9900
N3—C41.3485 (15)C6A—H6A20.9900
C1—C21.3418 (17)C7A—C8A1.520 (6)
C1—H10.9500C7A—H7A10.9900
C2—H20.9500C7A—H7A20.9900
C4—C61.488 (6)C8A—H8A10.9800
C6—C71.526 (5)C8A—H8A20.9800
C6—H6A0.9900C8A—H8A30.9800
C3—S1—C190.73 (6)C8—C7—C6113.1 (4)
C3—N1—C2113.50 (9)C8—C7—H7A109.0
C3—N1—C5119.76 (9)C6—C7—H7A109.0
C2—N1—C5126.73 (10)C8—C7—H7B109.0
C4—N2—C5119.89 (10)C6—C7—H7B109.0
C3—N3—C4113.74 (10)H7A—C7—H7B107.8
C2—C1—S1112.26 (9)C7—C8—H8A109.5
C2—C1—H1123.9C7—C8—H8B109.5
S1—C1—H1123.9H8A—C8—H8B109.5
C1—C2—N1112.39 (10)C7—C8—H8C109.5
C1—C2—H2123.8H8A—C8—H8C109.5
N1—C2—H2123.8H8B—C8—H8C109.5
N3—C3—N1124.11 (10)C7A—C6A—H6A1108.4
N3—C3—S1124.77 (9)C7A—C6A—H6A2108.4
N1—C3—S1111.11 (8)H6A1—C6A—H6A2107.5
N2—C5—N1115.95 (10)C8A—C7A—C6A112.2 (4)
N2—C5—S2123.99 (9)C8A—C7A—H7A1109.2
N1—C5—S2120.05 (8)C6A—C7A—H7A1109.2
N2—C4—N3126.44 (11)C8A—C7A—H7A2109.2
N2—C4—C6113.6 (3)C6A—C7A—H7A2109.2
N3—C4—C6119.4 (3)H7A1—C7A—H7A2107.9
C4—C6—C7107.7 (3)C7A—C8A—H8A1109.5
C4—C6—H6A110.2C7A—C8A—H8A2109.5
C7—C6—H6A110.2H8A1—C8A—H8A2109.5
C4—C6—H6B110.2C7A—C8A—H8A3109.5
C7—C6—H6B110.2H8A1—C8A—H8A3109.5
H6A—C6—H6B108.5H8A2—C8A—H8A3109.5
C3—S1—C1—C20.03 (9)C4—N2—C5—S2179.23 (9)
S1—C1—C2—N10.23 (13)C3—N1—C5—N23.03 (15)
C3—N1—C2—C10.38 (14)C2—N1—C5—N2178.04 (10)
C5—N1—C2—C1179.36 (10)C3—N1—C5—S2177.64 (8)
C4—N3—C3—N11.45 (16)C2—N1—C5—S21.28 (15)
C4—N3—C3—S1177.43 (9)C5—N2—C4—N31.78 (19)
C2—N1—C3—N3179.37 (10)C5—N2—C4—C6169.6 (2)
C5—N1—C3—N31.58 (16)C3—N3—C4—N23.24 (19)
C2—N1—C3—S10.35 (11)C3—N3—C4—C6167.7 (2)
C5—N1—C3—S1179.41 (7)N2—C4—C6—C7129.4 (3)
C1—S1—C3—N3179.19 (10)N3—C4—C6—C758.6 (4)
C1—S1—C3—N10.19 (8)C4—C6—C7—C862.5 (5)
C4—N2—C5—N11.48 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.952.383.3261 (16)171
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H9N3S2
Mr211.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.3240 (7), 14.9973 (11), 6.8063 (5)
β (°) 95.505 (1)
V3)947.37 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.32 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.853, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
5571, 2254, 2077
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.05
No. of reflections2254
No. of parameters161
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.952.383.3261 (16)171
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y.-P., Qiu, T., Wang, L.-E. & Wang, J.-N. (2007). Acta Cryst. E63, o3096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds