metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­(1H-imidazole-κN3)silver(I)] naphthalene-1,5-di­sulfonate

aCollege of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: dengdongsheng168@sina.com

(Received 16 November 2007; accepted 11 March 2008; online 14 March 2008)

The title compound, [Ag(C3H4N2)2]2(C10H6O6S2), exists in the form of isolated cations and anions with electrostatic inter­action between them. The Ag atom is two-coordinated by the N atoms of two crystallographically independent imidazole mol­ecules. The naphthalene-1,5-disulfonate anion is located on a crystallographic center of symmetry. The cations and anions are connected through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Côté & Shimizu (2003[Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.], 2004[Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.]); Cai (2004[Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061-1083.]); Cai et al. (2001[Cai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370-2375.]); Chen et al. (2001[Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr. 31, 271-280.], 2002[Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967-4974.]); Dalrymple & Shimizu (2002[Dalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Eur. J. 8, 3010-3015.]); Lian et al. (2007[Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.]); Liu et al. (2006[Liu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045-3052.]); Reddy et al. (2003[Reddy, D. S., Duncan, S. & Shimizu, G. K. H. (2003). Angew. Chem. Int. Ed. 42, 1360-1364.]); Shimizu et al. (1999[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485-1486.]); Zhou et al. (2004[Zhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493-1497.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C3H4N2)2]2(C10H6O6S2)

  • Mr = 774.36

  • Triclinic, [P \overline 1]

  • a = 8.6491 (11) Å

  • b = 9.0196 (12) Å

  • c = 10.2620 (13) Å

  • α = 65.286 (2)°

  • β = 76.311 (2)°

  • γ = 66.791 (2)°

  • V = 665.89 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 (2) K

  • 0.50 × 0.30 × 0.13 mm

Data collection
  • Bruker Smart 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.487, Tmax = 0.811

  • 4267 measured reflections

  • 2962 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 0.93

  • 2962 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.86 1.96 2.786 (3) 161
N2—H2A⋯O3ii 0.86 2.37 2.998 (3) 130
N2—H2A⋯O3iii 0.86 2.32 3.082 (3) 149
Symmetry codes: (i) x+1, y, z; (ii) x-1, y+1, z; (iii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the part of our recent investigations into the development of mixed inorganic–organic hybrid materials, we synthesized the silver sulfonate compound, which can be possess a potential wide chemical opportunity.

Sulfonate compounds have received much attention due to their potential application in chemical absorption and separation (Cai et al., 2004; Zhou et al., 2004; Liu et al., 2006). However, the weak coordination nature of SO3–group makes its coordination mode very flexible and sensitive to the chemical environment (Côté et al., 2003). Likewise, Ag+ ion is a notoriously pliant with respect to its coordination sphere. Thus, in silver sulfonates, various coordination modes are observed with coordination number ranging from two to nine (Côté et al., 2004; Dalrymple et al., 2002; Reddy et al., 2003; Shimizu et al., 1999). On the other hand, the coordination behavior of arene–sulfonates with transition metals can be peculiar in the presence of amino ligands (Chen et al., 2001; Cai et al., 2001; Chen et al., 2002).

The structure of the title compound, (I), is depicted in Fig. 1. There is one crystallographically independent Ag centre, coordinated by two nitrogen atoms from two different imidazole ligands with Ag—N1 = 2.1088 (19)Å and Ag—N2 = 2.109 (2) Å, respectively. The lesser contact distance Ag···O1 = 2.8185 (19)Å is longer than the reported Ag···O distance (Lian et al., 2007).

Cations and anions are connected through intermolecular N—H···O hydrogen bonds to form a linear tapes (N4—H4A···O2ii): N4···O2ii = 2.786 (3) Å, H4A···O2ii = 1.96Å and angle N4—H4A···O2ii = 160.7°, which run along the a–axis. The linear tapes are arranged in parallel fashion and further linked via hydrogen bonding between the coordinated imidazole molecules and the sulfonate oxygen atoms, thus leading to neutral extended two–dimensional sheets (N2—H2A···O3iii): N2···O3iii = 2.998 (3) Å, angle N2—H2A···O3iii = 129.8° and (N2—H2A···O3iv): N2···O3iv = 3.082 (3) Å, angle N2—H2A···O3iv = 148.6° as shown on Fig. 2 (symmetry codes: (ii) 1 + x, y, z); (iii) x - 2, y + 1, z; (iv) -x, 2 - y, 2 - z).

Related literature top

For related literature, see: Côté & Shimizu (2003, 2004); Cai (2004); Cai et al. (2001); Chen et al. (2001, 2002); Dalrymple & Shimizu (2002); Lian et al. (2007); Liu et al. (2006); Reddy et al. (2003); Shimizu et al. (1999); Zhou et al. (2004).

Experimental top

Disodium 1,5–naphthalene–disulfonate (0.33 g, 1 mmol) and imidazole (0.27 g, 4 mmol) were added to an aqueous solution of AgNO3 (0.32 g, 2 mmol) (10 ml). The result solution was stirred at 343 K for four hours in a water bath. After filtration, a clear solution was set aside to crystallize.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, respectively, and with Uiso(H) = 1.2Ueq(C or N)

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with the numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres with arbitrary radius. Symmetry code: (i) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. View of the sheet structure of I normal to the ac–plane. Hydrogen bonds are represented as dashed lines.
Bis[bis(1H-imidazole-κN3)silver(I)] naphthalene-1,5-disulfonate top
Crystal data top
[Ag(C3H4N2)2](C10H6O6S2)Z = 1
Mr = 774.36F(000) = 384
Triclinic, P1Dx = 1.931 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6491 (11) ÅCell parameters from 2962 reflections
b = 9.0196 (12) Åθ = 2.2–27.5°
c = 10.2620 (13) ŵ = 1.68 mm1
α = 65.286 (2)°T = 293 K
β = 76.311 (2)°Block, colourless
γ = 66.791 (2)°0.50 × 0.30 × 0.13 mm
V = 665.89 (15) Å3
Data collection top
Bruker Smart 1000 CCD
diffractometer
2962 independent reflections
Radiation source: Fine–focus sealed tube2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ– and ω–scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 119
Tmin = 0.487, Tmax = 0.811k = 1110
4267 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ag(C3H4N2)2](C10H6O6S2)γ = 66.791 (2)°
Mr = 774.36V = 665.89 (15) Å3
Triclinic, P1Z = 1
a = 8.6491 (11) ÅMo Kα radiation
b = 9.0196 (12) ŵ = 1.68 mm1
c = 10.2620 (13) ÅT = 293 K
α = 65.286 (2)°0.50 × 0.30 × 0.13 mm
β = 76.311 (2)°
Data collection top
Bruker Smart 1000 CCD
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2417 reflections with I > 2σ(I)
Tmin = 0.487, Tmax = 0.811Rint = 0.010
4267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 0.93Δρmax = 0.70 e Å3
2962 reflectionsΔρmin = 0.67 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.27879 (2)1.03409 (3)0.79027 (2)0.05010 (9)
S10.26541 (6)0.60865 (7)0.78924 (5)0.02831 (12)
O10.2153 (2)0.7948 (2)0.71897 (19)0.0442 (4)
O20.1257 (2)0.5487 (2)0.87280 (17)0.0403 (4)
O30.40789 (19)0.5352 (2)0.87452 (17)0.0394 (4)
N10.0163 (2)1.1487 (3)0.8293 (2)0.0375 (5)
N20.2347 (3)1.2925 (3)0.9009 (2)0.0432 (5)
H2A0.31301.36070.93920.052*
N30.5433 (3)0.9312 (3)0.7528 (2)0.0452 (5)
N40.8038 (3)0.7606 (3)0.7855 (3)0.0526 (6)
H4A0.89070.67970.82720.063*
C10.0695 (3)1.2583 (3)0.8957 (3)0.0400 (6)
H1A0.02111.30530.93380.048*
C20.2576 (3)1.2010 (4)0.8351 (3)0.0478 (6)
H2B0.36001.19940.82300.057*
C30.1029 (3)1.1132 (3)0.7907 (3)0.0441 (6)
H3A0.08011.03970.74150.053*
C40.6465 (4)0.8000 (4)0.8461 (3)0.0521 (7)
H4B0.61360.74270.94130.063*
C50.8032 (3)0.8703 (4)0.6468 (3)0.0500 (7)
H5A0.89530.87290.57830.060*
C60.6423 (3)0.9747 (4)0.6280 (3)0.0454 (6)
H6A0.60411.06370.54230.054*
C70.3281 (2)0.5262 (3)0.6470 (2)0.0261 (4)
C80.2202 (3)0.4654 (3)0.6223 (2)0.0315 (5)
H8A0.12020.46450.68100.038*
C90.2585 (3)0.4046 (3)0.5098 (3)0.0356 (5)
H9A0.18380.36370.49420.043*
C100.4037 (3)0.4044 (3)0.4227 (2)0.0303 (5)
H10A0.42810.36170.34920.036*
C110.5190 (2)0.4687 (3)0.4427 (2)0.0244 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02873 (11)0.04781 (14)0.06505 (16)0.00509 (8)0.00059 (8)0.02144 (11)
S10.0227 (2)0.0346 (3)0.0263 (3)0.0032 (2)0.00093 (19)0.0173 (2)
O10.0487 (10)0.0341 (9)0.0476 (10)0.0029 (8)0.0031 (8)0.0236 (8)
O20.0293 (8)0.0570 (11)0.0346 (8)0.0124 (8)0.0063 (7)0.0233 (8)
O30.0279 (8)0.0556 (11)0.0329 (8)0.0057 (7)0.0030 (6)0.0220 (8)
N10.0316 (10)0.0353 (11)0.0465 (11)0.0088 (8)0.0017 (8)0.0205 (9)
N20.0362 (11)0.0375 (11)0.0476 (12)0.0032 (9)0.0050 (9)0.0208 (10)
N30.0304 (11)0.0365 (11)0.0600 (14)0.0080 (9)0.0059 (10)0.0113 (10)
N40.0325 (11)0.0442 (13)0.0836 (18)0.0012 (9)0.0170 (11)0.0300 (13)
C10.0413 (13)0.0409 (14)0.0435 (13)0.0144 (11)0.0025 (10)0.0232 (11)
C20.0337 (13)0.0473 (15)0.0614 (17)0.0097 (11)0.0081 (12)0.0203 (14)
C30.0415 (14)0.0414 (14)0.0579 (16)0.0109 (11)0.0037 (12)0.0291 (13)
C40.0435 (15)0.0431 (15)0.0591 (17)0.0119 (12)0.0076 (13)0.0094 (13)
C50.0403 (15)0.0558 (17)0.0661 (18)0.0174 (13)0.0001 (13)0.0347 (16)
C60.0423 (14)0.0419 (14)0.0541 (16)0.0138 (12)0.0073 (12)0.0180 (13)
C70.0245 (10)0.0275 (10)0.0249 (10)0.0054 (8)0.0001 (8)0.0126 (9)
C80.0260 (11)0.0363 (12)0.0346 (11)0.0126 (9)0.0048 (9)0.0168 (10)
C90.0311 (12)0.0424 (13)0.0433 (13)0.0167 (10)0.0003 (9)0.0223 (11)
C100.0303 (11)0.0349 (12)0.0317 (11)0.0123 (9)0.0006 (9)0.0182 (10)
C110.0252 (10)0.0225 (10)0.0236 (10)0.0051 (8)0.0016 (8)0.0095 (8)
Geometric parameters (Å, º) top
Ag1—N12.1092 (19)C2—C31.342 (4)
Ag1—N32.110 (2)C2—H2B0.9300
Ag1—O12.8180 (19)C3—H3A0.9300
S1—O11.4451 (19)C4—H4B0.9300
S1—O31.4511 (16)C5—C61.343 (4)
S1—O21.4573 (18)C5—H5A0.9300
S1—C71.787 (2)C6—H6A0.9300
N1—C11.318 (3)C7—C81.367 (3)
N1—C31.371 (3)C7—C11i1.426 (3)
N2—C11.329 (3)C8—C91.396 (3)
N2—C21.354 (4)C8—H8A0.9300
N2—H2A0.8600C9—C101.358 (3)
N3—C41.318 (3)C9—H9A0.9300
N3—C61.361 (4)C10—C111.423 (3)
N4—C41.330 (4)C10—H10A0.9300
N4—C51.351 (4)C11—C7i1.426 (3)
N4—H4A0.8600C11—C11i1.428 (4)
C1—H1A0.9300
N1—Ag1—N3176.72 (8)C2—C3—N1109.5 (2)
N1—Ag1—O189.09 (7)C2—C3—H3A125.2
N3—Ag1—O194.16 (7)N1—C3—H3A125.2
O1—S1—O3113.46 (11)N3—C4—N4110.8 (3)
O1—S1—O2113.10 (11)N3—C4—H4B124.6
O3—S1—O2111.15 (10)N4—C4—H4B124.6
O1—S1—C7105.46 (10)C6—C5—N4105.9 (3)
O3—S1—C7107.98 (9)C6—C5—H5A127.0
O2—S1—C7105.03 (10)N4—C5—H5A127.0
S1—O1—Ag1128.71 (10)C5—C6—N3110.0 (3)
C1—N1—C3105.4 (2)C5—C6—H6A125.0
C1—N1—Ag1130.79 (18)N3—C6—H6A125.0
C3—N1—Ag1123.79 (16)C8—C7—C11i120.85 (19)
C1—N2—C2107.9 (2)C8—C7—S1117.59 (16)
C1—N2—H2A126.1C11i—C7—S1121.48 (16)
C2—N2—H2A126.1C7—C8—C9120.6 (2)
C4—N3—C6105.3 (2)C7—C8—H8A119.7
C4—N3—Ag1126.0 (2)C9—C8—H8A119.7
C6—N3—Ag1128.55 (18)C10—C9—C8120.8 (2)
C4—N4—C5108.0 (2)C10—C9—H9A119.6
C4—N4—H4A126.0C8—C9—H9A119.6
C5—N4—H4A126.0C9—C10—C11120.8 (2)
N1—C1—N2110.9 (2)C9—C10—H10A119.6
N1—C1—H1A124.5C11—C10—H10A119.6
N2—C1—H1A124.5C10—C11—C7i123.01 (18)
C3—C2—N2106.3 (2)C10—C11—C11i118.9 (2)
C3—C2—H2B126.8C7i—C11—C11i118.1 (2)
N2—C2—H2B126.8
O3—S1—O1—Ag121.44 (16)C5—N4—C4—N30.2 (3)
O2—S1—O1—Ag1106.34 (13)C4—N4—C5—C60.2 (3)
C7—S1—O1—Ag1139.42 (11)N4—C5—C6—N30.1 (3)
N1—Ag1—O1—S1117.49 (14)C4—N3—C6—C50.0 (3)
N3—Ag1—O1—S162.94 (14)Ag1—N3—C6—C5175.65 (19)
O1—Ag1—N1—C1165.5 (2)O1—S1—C7—C8105.14 (19)
O1—Ag1—N1—C311.9 (2)O3—S1—C7—C8133.26 (18)
O1—Ag1—N3—C485.4 (2)O2—S1—C7—C814.6 (2)
O1—Ag1—N3—C689.4 (2)O1—S1—C7—C11i71.72 (19)
C3—N1—C1—N20.1 (3)O3—S1—C7—C11i49.88 (19)
Ag1—N1—C1—N2177.57 (16)O2—S1—C7—C11i168.56 (16)
C2—N2—C1—N10.1 (3)C11i—C7—C8—C90.9 (3)
C1—N2—C2—C30.3 (3)S1—C7—C8—C9177.80 (18)
N2—C2—C3—N10.4 (3)C7—C8—C9—C100.1 (4)
C1—N1—C3—C20.3 (3)C8—C9—C10—C111.0 (4)
Ag1—N1—C3—C2177.61 (18)C9—C10—C11—C7i179.0 (2)
C6—N3—C4—N40.1 (3)C9—C10—C11—C11i0.9 (4)
Ag1—N3—C4—N4175.93 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2ii0.861.962.786 (3)161
N2—H2A···O3iii0.862.372.998 (3)130
N2—H2A···O3iv0.862.323.082 (3)149
Symmetry codes: (ii) x+1, y, z; (iii) x1, y+1, z; (iv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ag(C3H4N2)2](C10H6O6S2)
Mr774.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6491 (11), 9.0196 (12), 10.2620 (13)
α, β, γ (°)65.286 (2), 76.311 (2), 66.791 (2)
V3)665.89 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.50 × 0.30 × 0.13
Data collection
DiffractometerBruker Smart 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.487, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
4267, 2962, 2417
Rint0.010
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 0.93
No. of reflections2962
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.67

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.861.962.786 (3)160.7
N2—H2A···O3ii0.862.372.998 (3)129.8
N2—H2A···O3iii0.862.323.082 (3)148.6
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x, y+2, z+2.
 

Acknowledgements

We thank the Henan Institute of Science and Technology for financial support and we thank Professor Ji-Wen Cai for his guidance.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J. W. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375.  Web of Science CSD CrossRef Google Scholar
First citationChen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr. 31, 271–280.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49–64.  Web of Science CrossRef CAS Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Eur. J. 8, 3010–3015.  CrossRef PubMed CAS Google Scholar
First citationLian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045–3052.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, D. S., Duncan, S. & Shimizu, G. K. H. (2003). Angew. Chem. Int. Ed. 42, 1360–1364.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.  Web of Science CSD CrossRef Google Scholar
First citationZhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493–1497.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds