metal-organic compounds
Bis[bis(1H-imidazole-κN3)silver(I)] naphthalene-1,5-disulfonate
aCollege of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: dengdongsheng168@sina.com
The title compound, [Ag(C3H4N2)2]2(C10H6O6S2), exists in the form of isolated cations and anions with electrostatic interaction between them. The Ag atom is two-coordinated by the N atoms of two crystallographically independent imidazole molecules. The naphthalene-1,5-disulfonate anion is located on a crystallographic center of symmetry. The cations and anions are connected through intermolecular N—H⋯O hydrogen bonds.
Related literature
For related literature, see: Côté & Shimizu (2003, 2004); Cai (2004); Cai et al. (2001); Chen et al. (2001, 2002); Dalrymple & Shimizu (2002); Lian et al. (2007); Liu et al. (2006); Reddy et al. (2003); Shimizu et al. (1999); Zhou et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808006855/rk2068sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808006855/rk2068Isup2.hkl
Disodium 1,5–naphthalene–disulfonate (0.33 g, 1 mmol) and imidazole (0.27 g, 4 mmol) were added to an aqueous solution of AgNO3 (0.32 g, 2 mmol) (10 ml). The result solution was stirred at 343 K for four hours in a water bath. After filtration, a clear solution was set aside to crystallize.
All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, respectively, and with Uiso(H) = 1.2Ueq(C or N)
Data collection: SMART (Bruker, 1997); cell
SMART (Bruker, 1997); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag(C3H4N2)2](C10H6O6S2) | Z = 1 |
Mr = 774.36 | F(000) = 384 |
Triclinic, P1 | Dx = 1.931 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6491 (11) Å | Cell parameters from 2962 reflections |
b = 9.0196 (12) Å | θ = 2.2–27.5° |
c = 10.2620 (13) Å | µ = 1.68 mm−1 |
α = 65.286 (2)° | T = 293 K |
β = 76.311 (2)° | Block, colourless |
γ = 66.791 (2)° | 0.50 × 0.30 × 0.13 mm |
V = 665.89 (15) Å3 |
Bruker Smart 1000 CCD diffractometer | 2962 independent reflections |
Radiation source: Fine–focus sealed tube | 2417 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.010 |
ϕ– and ω–scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→9 |
Tmin = 0.487, Tmax = 0.811 | k = −11→10 |
4267 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0388P)2] where P = (Fo2 + 2Fc2)/3 |
2962 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
[Ag(C3H4N2)2](C10H6O6S2) | γ = 66.791 (2)° |
Mr = 774.36 | V = 665.89 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.6491 (11) Å | Mo Kα radiation |
b = 9.0196 (12) Å | µ = 1.68 mm−1 |
c = 10.2620 (13) Å | T = 293 K |
α = 65.286 (2)° | 0.50 × 0.30 × 0.13 mm |
β = 76.311 (2)° |
Bruker Smart 1000 CCD diffractometer | 2962 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2417 reflections with I > 2σ(I) |
Tmin = 0.487, Tmax = 0.811 | Rint = 0.010 |
4267 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.70 e Å−3 |
2962 reflections | Δρmin = −0.67 e Å−3 |
181 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.27879 (2) | 1.03409 (3) | 0.79027 (2) | 0.05010 (9) | |
S1 | 0.26541 (6) | 0.60865 (7) | 0.78924 (5) | 0.02831 (12) | |
O1 | 0.2153 (2) | 0.7948 (2) | 0.71897 (19) | 0.0442 (4) | |
O2 | 0.1257 (2) | 0.5487 (2) | 0.87280 (17) | 0.0403 (4) | |
O3 | 0.40789 (19) | 0.5352 (2) | 0.87452 (17) | 0.0394 (4) | |
N1 | 0.0163 (2) | 1.1487 (3) | 0.8293 (2) | 0.0375 (5) | |
N2 | −0.2347 (3) | 1.2925 (3) | 0.9009 (2) | 0.0432 (5) | |
H2A | −0.3130 | 1.3607 | 0.9392 | 0.052* | |
N3 | 0.5433 (3) | 0.9312 (3) | 0.7528 (2) | 0.0452 (5) | |
N4 | 0.8038 (3) | 0.7606 (3) | 0.7855 (3) | 0.0526 (6) | |
H4A | 0.8907 | 0.6797 | 0.8272 | 0.063* | |
C1 | −0.0695 (3) | 1.2583 (3) | 0.8957 (3) | 0.0400 (6) | |
H1A | −0.0211 | 1.3053 | 0.9338 | 0.048* | |
C2 | −0.2576 (3) | 1.2010 (4) | 0.8351 (3) | 0.0478 (6) | |
H2B | −0.3600 | 1.1994 | 0.8230 | 0.057* | |
C3 | −0.1029 (3) | 1.1132 (3) | 0.7907 (3) | 0.0441 (6) | |
H3A | −0.0801 | 1.0397 | 0.7415 | 0.053* | |
C4 | 0.6465 (4) | 0.8000 (4) | 0.8461 (3) | 0.0521 (7) | |
H4B | 0.6136 | 0.7427 | 0.9413 | 0.063* | |
C5 | 0.8032 (3) | 0.8703 (4) | 0.6468 (3) | 0.0500 (7) | |
H5A | 0.8953 | 0.8729 | 0.5783 | 0.060* | |
C6 | 0.6423 (3) | 0.9747 (4) | 0.6280 (3) | 0.0454 (6) | |
H6A | 0.6041 | 1.0637 | 0.5423 | 0.054* | |
C7 | 0.3281 (2) | 0.5262 (3) | 0.6470 (2) | 0.0261 (4) | |
C8 | 0.2202 (3) | 0.4654 (3) | 0.6223 (2) | 0.0315 (5) | |
H8A | 0.1202 | 0.4645 | 0.6810 | 0.038* | |
C9 | 0.2585 (3) | 0.4046 (3) | 0.5098 (3) | 0.0356 (5) | |
H9A | 0.1838 | 0.3637 | 0.4942 | 0.043* | |
C10 | 0.4037 (3) | 0.4044 (3) | 0.4227 (2) | 0.0303 (5) | |
H10A | 0.4281 | 0.3617 | 0.3492 | 0.036* | |
C11 | 0.5190 (2) | 0.4687 (3) | 0.4427 (2) | 0.0244 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02873 (11) | 0.04781 (14) | 0.06505 (16) | −0.00509 (8) | −0.00059 (8) | −0.02144 (11) |
S1 | 0.0227 (2) | 0.0346 (3) | 0.0263 (3) | −0.0032 (2) | 0.00093 (19) | −0.0173 (2) |
O1 | 0.0487 (10) | 0.0341 (9) | 0.0476 (10) | −0.0029 (8) | −0.0031 (8) | −0.0236 (8) |
O2 | 0.0293 (8) | 0.0570 (11) | 0.0346 (8) | −0.0124 (8) | 0.0063 (7) | −0.0233 (8) |
O3 | 0.0279 (8) | 0.0556 (11) | 0.0329 (8) | −0.0057 (7) | −0.0030 (6) | −0.0220 (8) |
N1 | 0.0316 (10) | 0.0353 (11) | 0.0465 (11) | −0.0088 (8) | 0.0017 (8) | −0.0205 (9) |
N2 | 0.0362 (11) | 0.0375 (11) | 0.0476 (12) | −0.0032 (9) | 0.0050 (9) | −0.0208 (10) |
N3 | 0.0304 (11) | 0.0365 (11) | 0.0600 (14) | −0.0080 (9) | −0.0059 (10) | −0.0113 (10) |
N4 | 0.0325 (11) | 0.0442 (13) | 0.0836 (18) | −0.0012 (9) | −0.0170 (11) | −0.0300 (13) |
C1 | 0.0413 (13) | 0.0409 (14) | 0.0435 (13) | −0.0144 (11) | 0.0025 (10) | −0.0232 (11) |
C2 | 0.0337 (13) | 0.0473 (15) | 0.0614 (17) | −0.0097 (11) | −0.0081 (12) | −0.0203 (14) |
C3 | 0.0415 (14) | 0.0414 (14) | 0.0579 (16) | −0.0109 (11) | −0.0037 (12) | −0.0291 (13) |
C4 | 0.0435 (15) | 0.0431 (15) | 0.0591 (17) | −0.0119 (12) | −0.0076 (13) | −0.0094 (13) |
C5 | 0.0403 (15) | 0.0558 (17) | 0.0661 (18) | −0.0174 (13) | 0.0001 (13) | −0.0347 (16) |
C6 | 0.0423 (14) | 0.0419 (14) | 0.0541 (16) | −0.0138 (12) | −0.0073 (12) | −0.0180 (13) |
C7 | 0.0245 (10) | 0.0275 (10) | 0.0249 (10) | −0.0054 (8) | 0.0001 (8) | −0.0126 (9) |
C8 | 0.0260 (11) | 0.0363 (12) | 0.0346 (11) | −0.0126 (9) | 0.0048 (9) | −0.0168 (10) |
C9 | 0.0311 (12) | 0.0424 (13) | 0.0433 (13) | −0.0167 (10) | −0.0003 (9) | −0.0223 (11) |
C10 | 0.0303 (11) | 0.0349 (12) | 0.0317 (11) | −0.0123 (9) | 0.0006 (9) | −0.0182 (10) |
C11 | 0.0252 (10) | 0.0225 (10) | 0.0236 (10) | −0.0051 (8) | −0.0016 (8) | −0.0095 (8) |
Ag1—N1 | 2.1092 (19) | C2—C3 | 1.342 (4) |
Ag1—N3 | 2.110 (2) | C2—H2B | 0.9300 |
Ag1—O1 | 2.8180 (19) | C3—H3A | 0.9300 |
S1—O1 | 1.4451 (19) | C4—H4B | 0.9300 |
S1—O3 | 1.4511 (16) | C5—C6 | 1.343 (4) |
S1—O2 | 1.4573 (18) | C5—H5A | 0.9300 |
S1—C7 | 1.787 (2) | C6—H6A | 0.9300 |
N1—C1 | 1.318 (3) | C7—C8 | 1.367 (3) |
N1—C3 | 1.371 (3) | C7—C11i | 1.426 (3) |
N2—C1 | 1.329 (3) | C8—C9 | 1.396 (3) |
N2—C2 | 1.354 (4) | C8—H8A | 0.9300 |
N2—H2A | 0.8600 | C9—C10 | 1.358 (3) |
N3—C4 | 1.318 (3) | C9—H9A | 0.9300 |
N3—C6 | 1.361 (4) | C10—C11 | 1.423 (3) |
N4—C4 | 1.330 (4) | C10—H10A | 0.9300 |
N4—C5 | 1.351 (4) | C11—C7i | 1.426 (3) |
N4—H4A | 0.8600 | C11—C11i | 1.428 (4) |
C1—H1A | 0.9300 | ||
N1—Ag1—N3 | 176.72 (8) | C2—C3—N1 | 109.5 (2) |
N1—Ag1—O1 | 89.09 (7) | C2—C3—H3A | 125.2 |
N3—Ag1—O1 | 94.16 (7) | N1—C3—H3A | 125.2 |
O1—S1—O3 | 113.46 (11) | N3—C4—N4 | 110.8 (3) |
O1—S1—O2 | 113.10 (11) | N3—C4—H4B | 124.6 |
O3—S1—O2 | 111.15 (10) | N4—C4—H4B | 124.6 |
O1—S1—C7 | 105.46 (10) | C6—C5—N4 | 105.9 (3) |
O3—S1—C7 | 107.98 (9) | C6—C5—H5A | 127.0 |
O2—S1—C7 | 105.03 (10) | N4—C5—H5A | 127.0 |
S1—O1—Ag1 | 128.71 (10) | C5—C6—N3 | 110.0 (3) |
C1—N1—C3 | 105.4 (2) | C5—C6—H6A | 125.0 |
C1—N1—Ag1 | 130.79 (18) | N3—C6—H6A | 125.0 |
C3—N1—Ag1 | 123.79 (16) | C8—C7—C11i | 120.85 (19) |
C1—N2—C2 | 107.9 (2) | C8—C7—S1 | 117.59 (16) |
C1—N2—H2A | 126.1 | C11i—C7—S1 | 121.48 (16) |
C2—N2—H2A | 126.1 | C7—C8—C9 | 120.6 (2) |
C4—N3—C6 | 105.3 (2) | C7—C8—H8A | 119.7 |
C4—N3—Ag1 | 126.0 (2) | C9—C8—H8A | 119.7 |
C6—N3—Ag1 | 128.55 (18) | C10—C9—C8 | 120.8 (2) |
C4—N4—C5 | 108.0 (2) | C10—C9—H9A | 119.6 |
C4—N4—H4A | 126.0 | C8—C9—H9A | 119.6 |
C5—N4—H4A | 126.0 | C9—C10—C11 | 120.8 (2) |
N1—C1—N2 | 110.9 (2) | C9—C10—H10A | 119.6 |
N1—C1—H1A | 124.5 | C11—C10—H10A | 119.6 |
N2—C1—H1A | 124.5 | C10—C11—C7i | 123.01 (18) |
C3—C2—N2 | 106.3 (2) | C10—C11—C11i | 118.9 (2) |
C3—C2—H2B | 126.8 | C7i—C11—C11i | 118.1 (2) |
N2—C2—H2B | 126.8 | ||
O3—S1—O1—Ag1 | −21.44 (16) | C5—N4—C4—N3 | −0.2 (3) |
O2—S1—O1—Ag1 | 106.34 (13) | C4—N4—C5—C6 | 0.2 (3) |
C7—S1—O1—Ag1 | −139.42 (11) | N4—C5—C6—N3 | −0.1 (3) |
N1—Ag1—O1—S1 | −117.49 (14) | C4—N3—C6—C5 | 0.0 (3) |
N3—Ag1—O1—S1 | 62.94 (14) | Ag1—N3—C6—C5 | −175.65 (19) |
O1—Ag1—N1—C1 | 165.5 (2) | O1—S1—C7—C8 | −105.14 (19) |
O1—Ag1—N1—C3 | −11.9 (2) | O3—S1—C7—C8 | 133.26 (18) |
O1—Ag1—N3—C4 | −85.4 (2) | O2—S1—C7—C8 | 14.6 (2) |
O1—Ag1—N3—C6 | 89.4 (2) | O1—S1—C7—C11i | 71.72 (19) |
C3—N1—C1—N2 | 0.1 (3) | O3—S1—C7—C11i | −49.88 (19) |
Ag1—N1—C1—N2 | −177.57 (16) | O2—S1—C7—C11i | −168.56 (16) |
C2—N2—C1—N1 | 0.1 (3) | C11i—C7—C8—C9 | 0.9 (3) |
C1—N2—C2—C3 | −0.3 (3) | S1—C7—C8—C9 | 177.80 (18) |
N2—C2—C3—N1 | 0.4 (3) | C7—C8—C9—C10 | 0.1 (4) |
C1—N1—C3—C2 | −0.3 (3) | C8—C9—C10—C11 | −1.0 (4) |
Ag1—N1—C3—C2 | 177.61 (18) | C9—C10—C11—C7i | −179.0 (2) |
C6—N3—C4—N4 | 0.1 (3) | C9—C10—C11—C11i | 0.9 (4) |
Ag1—N3—C4—N4 | 175.93 (19) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O2ii | 0.86 | 1.96 | 2.786 (3) | 161 |
N2—H2A···O3iii | 0.86 | 2.37 | 2.998 (3) | 130 |
N2—H2A···O3iv | 0.86 | 2.32 | 3.082 (3) | 149 |
Symmetry codes: (ii) x+1, y, z; (iii) x−1, y+1, z; (iv) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Ag(C3H4N2)2](C10H6O6S2) |
Mr | 774.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.6491 (11), 9.0196 (12), 10.2620 (13) |
α, β, γ (°) | 65.286 (2), 76.311 (2), 66.791 (2) |
V (Å3) | 665.89 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.68 |
Crystal size (mm) | 0.50 × 0.30 × 0.13 |
Data collection | |
Diffractometer | Bruker Smart 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.487, 0.811 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4267, 2962, 2417 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.063, 0.93 |
No. of reflections | 2962 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.67 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O2i | 0.86 | 1.96 | 2.786 (3) | 160.7 |
N2—H2A···O3ii | 0.86 | 2.37 | 2.998 (3) | 129.8 |
N2—H2A···O3iii | 0.86 | 2.32 | 3.082 (3) | 148.6 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y+1, z; (iii) −x, −y+2, −z+2. |
Acknowledgements
We thank the Henan Institute of Science and Technology for financial support and we thank Professor Ji-Wen Cai for his guidance.
References
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061–1083. Web of Science CSD CrossRef CAS Google Scholar
Cai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375. Web of Science CSD CrossRef Google Scholar
Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2001). J. Chem. Crystallogr. 31, 271–280. Web of Science CSD CrossRef CAS Google Scholar
Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, C. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974. Web of Science CSD CrossRef PubMed CAS Google Scholar
Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49–64. Web of Science CrossRef CAS Google Scholar
Côté, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Eur. J. 8, 3010–3015. CrossRef PubMed CAS Google Scholar
Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327. Web of Science CSD CrossRef CAS Google Scholar
Liu, P., Lian, Z. X. & Cai, J. W. (2006). Polyhedron, 25, 3045–3052. Web of Science CSD CrossRef CAS Google Scholar
Reddy, D. S., Duncan, S. & Shimizu, G. K. H. (2003). Angew. Chem. Int. Ed. 42, 1360–1364. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486. Web of Science CSD CrossRef Google Scholar
Zhou, J. S., Cai, J. W. & Wang, L. (2004). J. Chem. Soc. Dalton Trans. pp. 1493–1497. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the part of our recent investigations into the development of mixed inorganic–organic hybrid materials, we synthesized the silver sulfonate compound, which can be possess a potential wide chemical opportunity.
Sulfonate compounds have received much attention due to their potential application in chemical absorption and separation (Cai et al., 2004; Zhou et al., 2004; Liu et al., 2006). However, the weak coordination nature of SO3–group makes its coordination mode very flexible and sensitive to the chemical environment (Côté et al., 2003). Likewise, Ag+ ion is a notoriously pliant with respect to its coordination sphere. Thus, in silver sulfonates, various coordination modes are observed with coordination number ranging from two to nine (Côté et al., 2004; Dalrymple et al., 2002; Reddy et al., 2003; Shimizu et al., 1999). On the other hand, the coordination behavior of arene–sulfonates with transition metals can be peculiar in the presence of amino ligands (Chen et al., 2001; Cai et al., 2001; Chen et al., 2002).
The structure of the title compound, (I), is depicted in Fig. 1. There is one crystallographically independent Ag centre, coordinated by two nitrogen atoms from two different imidazole ligands with Ag—N1 = 2.1088 (19)Å and Ag—N2 = 2.109 (2) Å, respectively. The lesser contact distance Ag···O1 = 2.8185 (19)Å is longer than the reported Ag···O distance (Lian et al., 2007).
Cations and anions are connected through intermolecular N—H···O hydrogen bonds to form a linear tapes (N4—H4A···O2ii): N4···O2ii = 2.786 (3) Å, H4A···O2ii = 1.96Å and angle N4—H4A···O2ii = 160.7°, which run along the a–axis. The linear tapes are arranged in parallel fashion and further linked via hydrogen bonding between the coordinated imidazole molecules and the sulfonate oxygen atoms, thus leading to neutral extended two–dimensional sheets (N2—H2A···O3iii): N2···O3iii = 2.998 (3) Å, angle N2—H2A···O3iii = 129.8° and (N2—H2A···O3iv): N2···O3iv = 3.082 (3) Å, angle N2—H2A···O3iv = 148.6° as shown on Fig. 2 (symmetry codes: (ii) 1 + x, y, z); (iii) x - 2, y + 1, z; (iv) -x, 2 - y, 2 - z).