organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(Z)-3-chloro­benzyl­­idene]-7-methyl-3-oxo-5-phenyl-2,3-di­hydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aBhavan's R. A. College of Science, Ahmedabd, Gujarat 380 001, India, and bM. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India
*Correspondence e-mail: mmjotani@rediffmail.com

(Received 6 March 2008; accepted 17 March 2008; online 29 March 2008)

In the title compound, C23H19ClN2O3S, the central pyrimidine ring is significantly puckered, assuming almost a screw boat conformation. In addition to the usual inter­molecular C—H⋯O hydrogen bonding, short intra­molecular C—H⋯S contacts and ππ stacking inter­actions [centroid–centroid distance = 3.762 (2) Å] contribute to the crystal packing.

Related literature

For the crystal structures of similar compounds, see: Jotani & Baldaniya (2006[Jotani, M. M. & Baldaniya, B. B. (2006). Acta Cryst. E62, o5871-o5873.], 2007[Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937-o1939.]); Sridhar et al., (2006[Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687-o690.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224-o1225.]). For the biological activities, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Rovnyak et al. (1995[Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Dimarco, J. D., Hedberg, J., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119-129.]); Monks et al. (1991[Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. & Boyd, M. (1991). J. Natl Cancer Inst. 83, 757-766.]); Winter et al. (1962[Winter, C. A., Risley, E. A. & Nuss, G. W. (1962). Proc. Soc. Exp. Biol. Med. 111, 544-547.]). For related literature, see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19ClN2O3S

  • Mr = 438.92

  • Triclinic, [P \overline 1]

  • a = 8.2650 (3) Å

  • b = 10.3291 (4) Å

  • c = 13.5655 (5) Å

  • α = 94.129 (2)°

  • β = 100.837 (2)°

  • γ = 111.812 (2)°

  • V = 1043.15 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 (2) K

  • 0.47 × 0.35 × 0.2 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 0.936

  • 18826 measured reflections

  • 3677 independent reflections

  • 3111 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.06

  • 3677 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O1i 0.93 2.49 3.287 (3) 143
C19—H19⋯S1 0.93 2.50 3.210 (3) 133
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The remarkable biological activties of fused pyrimidines such as antiviral, antitumor, anticancer, antiinflammatory, antihypertensive etc. (Kappe, 2000; Rovnyak et al., 1995) bring this class of heterocyclic compounds of significant pharmacological interest. The title thiazolo [3,2-a] pyrimidine compound, (I), possesses anticancer and antiinflammatory activity. The anticancer drug screen is carried out using a diverse panel of cultured human tumor cell lines (Monks et al., 1991). The anti-inflammatory activity is determined by inhibition in the Carageena-induced rat paw edema method (Winter et al., 1962). In view of these properties and to study the effect of chlorine substituent at different positions of benzene ring on crystal packing, the crystal structure of I has been determined.

On Fig. 1 is shown the molecular structure of I with the atom numbering scheme. The pyrimidine ring adopts almost a screw boat conformation as indicated by the ring puckering parameters [q2 = 0.175 (2)Å, q3 = 0.077 (2)Å, θ = 66.2 (6)° and ϕ = 173.1 (7)°; Cremer & Pople, 1975]. The idealized values for the screw boat conformation are: θ = 67.5° and ϕ = (60k + 30)°, where k is an integer. The asymmetry parameters also support this information. All bond lengths and angles in the pyrimidine ring have normal values. The fused thiazole ring has usual geometry as observed in other fused thiazolopyrimidine compounds (Jotani & Baldaniya, 2006, 2007; Sridhar et al., 2006). The thiazole ring makes dihedral angles of 89.06 (11) and 6.56 (10)° with the benzene rings C11–C16 and C18–C23, respectively. The short C9–C10 bond distance is a consequence of slight liberation of the ethoxy group. The ethoxy group is in all–trans conformation as observed from the torsional angles C3–C8–O2–C9 and C8–O2–C9–C10 of -176.0 (2) and 117.2 (3)° respectively.

The crystal structure of I is also have an intermolecular C—H···O interaction (Fig. 2 and Table) similar to earlier reported ortho- and para-substituted compounds (Jotani & Baldaniya, 2006, 2007). In the structure a carbon C23 atom of C18–C23 benzene ring participates in the C—H···O interaction that forms R22(14) graph–set motif (Bernstein et al., 1995), where as in ortho- and para-substituted chlorine derivatives, the interaction is due to C14 atom of C11–C16 benzene ring. This may be the different symmetry of the crystal system as the title compound I crystallizes in triclinic system where as the previous two structures were crystallized in monoclinic space group. A PLATON analysis (Spek, 2003) of I indicated that a weak intramolecular C—H···S hydrogen bond (Fig. 1 and Table) forms a pseudo-six-membered ring of S(6) graph-set motif (Bernstein et al., 1995) also help to consolidate the crystal packing. There is a comparatively weak ππ stacking interaction between the C18–C23 benzene rings with symmetry codes: (x, y, z) and (1-x, 1-y, -z); their centroids are separated by 3.762 (2)Å and the rings have a slippage of 1.523Å (Fig. 3).

Related literature top

For the crystal structures of similar compounds, see: Jotani & Baldaniya (2006, 2007); Sridhar et al., (2006); Fischer et al. (2007). For the biological activities, see: Kappe (2000); Rovnyak et al. (1995); Monks et al. (1991); Winter et al. (1962). For related literature, see: Allen, (2002); Bernstein et al. (1995); Cremer & Pople, (1975).

Experimental top

A mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mol), chloroacetic acid (0.01 mol), fused sodium acetate (6 g) in glacial acetic acid (25 ml), acetic anhydride (10 ml) and 3-chlorobenzaldehyde (0.01 mol) was refluxed for 3 h. The reaction mixture was cooled and poured into cold water. The resulting solid was collected and crystallized from methanol to obtain the final product (82% yield, mp 444 K). The compound was recrystallized by slow evaporation of an ethanol solution, yielding yellow, Platlike single crystals suitable for X–ray diffraction.

Refinement top

H atoms were placed in idealized positions (C—H = 0.93–0.98Å) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The C—H···S intramolecular hydrogen bond is indicated by dashed line.
[Figure 2] Fig. 2. PLATON (Spek, 2003) plot of I showing C—H···O intermolecular interactions and forming R22(14) graph–set motif as dashed lines. H atoms not involved in hydrogen bonding have been omitted. Symmetry code (i): -x+1, -y+1, -z.
[Figure 3] Fig. 3. A view of the ππ stacking interaction (dashed line) in the crystal structure of I. H atoms have been omitted for clarity.
Ethyl 2-[(Z)-3-chlorobenzylidene]-7-methyl-3-oxo-5-phenyl-2,3-dihydro- 5H-1,3-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C23H19ClN2O3SZ = 2
Mr = 438.92F(000) = 456
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2650 (3) ÅCell parameters from 3579 reflections
b = 10.3291 (4) Åθ = 2.4–25.0°
c = 13.5655 (5) ŵ = 0.31 mm1
α = 94.129 (2)°T = 293 K
β = 100.837 (2)°Plate, yellow
γ = 111.812 (2)°0.47 × 0.35 × 0.2 mm
V = 1043.15 (7) Å3
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3677 independent reflections
Radiation source: Fine–focus sealed tube3111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.867, Tmax = 0.936k = 1212
18826 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: Geom
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.3244P]
where P = (Fo2 + 2Fc2)/3
3677 reflections(Δ/σ)max = 0.007
273 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H19ClN2O3Sγ = 111.812 (2)°
Mr = 438.92V = 1043.15 (7) Å3
Triclinic, P1Z = 2
a = 8.2650 (3) ÅMo Kα radiation
b = 10.3291 (4) ŵ = 0.31 mm1
c = 13.5655 (5) ÅT = 293 K
α = 94.129 (2)°0.47 × 0.35 × 0.2 mm
β = 100.837 (2)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3111 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.936Rint = 0.024
18826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
3677 reflectionsΔρmin = 0.25 e Å3
273 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30130 (8)0.19021 (5)0.22916 (4)0.06087 (19)
Cl11.00143 (9)0.23402 (9)0.04622 (5)0.0932 (3)
N10.0766 (2)0.24166 (16)0.32599 (13)0.0579 (4)
N20.2084 (2)0.40286 (15)0.22081 (11)0.0471 (4)
O10.3663 (2)0.52920 (15)0.11435 (11)0.0657 (4)
O20.0956 (2)0.62159 (17)0.26634 (16)0.0856 (6)
O30.2281 (3)0.4916 (2)0.37203 (18)0.1084 (7)
C10.1793 (3)0.28444 (18)0.26598 (14)0.0497 (4)
C20.1416 (2)0.50926 (18)0.25273 (14)0.0450 (4)
H20.09290.54150.19230.054*
C30.0077 (2)0.44015 (19)0.30586 (14)0.0503 (4)
C40.0276 (3)0.3192 (2)0.34291 (15)0.0545 (5)
C50.3266 (3)0.4282 (2)0.15758 (14)0.0502 (4)
C60.3964 (3)0.3146 (2)0.15427 (14)0.0525 (5)
C70.1590 (3)0.2496 (3)0.4043 (2)0.0770 (7)
H7A0.12390.30510.47040.115*
H7B0.16140.15710.41110.115*
H7C0.27600.24200.37070.115*
C80.1222 (3)0.5170 (2)0.32026 (17)0.0598 (5)
C90.1899 (4)0.7149 (3)0.2770 (3)0.1048 (11)
H9A0.26180.71340.21120.126*
H9B0.26950.68170.32220.126*
C100.0642 (5)0.8562 (3)0.3169 (3)0.1099 (10)
H10A0.12760.91650.32320.165*
H10B0.01390.88900.27180.165*
H10C0.00540.85770.38250.165*
C110.2941 (2)0.63460 (17)0.32116 (13)0.0427 (4)
C120.3852 (3)0.6173 (2)0.41182 (15)0.0600 (5)
H120.35260.52840.43130.072*
C130.5242 (3)0.7309 (3)0.47383 (17)0.0704 (6)
H130.58790.71790.53390.085*
C140.5688 (3)0.8626 (2)0.44719 (19)0.0709 (6)
H140.66130.93970.48950.085*
C150.4773 (4)0.8804 (2)0.3587 (2)0.0813 (7)
H150.50680.97020.34080.098*
C160.3416 (3)0.7672 (2)0.29520 (17)0.0640 (5)
H160.28150.78060.23420.077*
C170.5194 (3)0.3207 (2)0.10123 (15)0.0572 (5)
H170.54940.39610.06510.069*
C180.6139 (3)0.2279 (2)0.09120 (14)0.0573 (5)
C190.5795 (3)0.1033 (3)0.13257 (17)0.0684 (6)
H190.49020.07440.16860.082*
C200.6773 (4)0.0225 (3)0.12037 (19)0.0801 (7)
H200.65430.05970.14910.096*
C210.8079 (4)0.0619 (3)0.06648 (18)0.0763 (7)
H210.87340.00720.05840.092*
C220.8402 (3)0.1837 (3)0.02458 (16)0.0677 (6)
C230.7458 (3)0.2672 (2)0.03618 (15)0.0608 (5)
H230.77040.34940.00730.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0788 (4)0.0511 (3)0.0654 (3)0.0353 (3)0.0227 (3)0.0169 (2)
Cl10.0854 (5)0.1389 (7)0.0814 (4)0.0718 (5)0.0248 (3)0.0110 (4)
N10.0634 (10)0.0453 (9)0.0625 (10)0.0157 (8)0.0188 (8)0.0127 (8)
N20.0545 (9)0.0406 (8)0.0479 (8)0.0202 (7)0.0130 (7)0.0064 (6)
O10.0892 (10)0.0631 (9)0.0723 (9)0.0459 (8)0.0416 (8)0.0308 (7)
O20.0723 (10)0.0714 (10)0.1448 (17)0.0428 (8)0.0596 (11)0.0413 (11)
O30.1136 (15)0.1288 (17)0.1383 (18)0.0757 (14)0.0846 (14)0.0613 (14)
C10.0559 (11)0.0402 (9)0.0495 (10)0.0167 (8)0.0089 (8)0.0058 (8)
C20.0469 (9)0.0414 (9)0.0494 (10)0.0191 (8)0.0133 (8)0.0083 (7)
C30.0432 (9)0.0455 (10)0.0538 (11)0.0090 (8)0.0112 (8)0.0032 (8)
C40.0492 (10)0.0471 (10)0.0570 (11)0.0080 (8)0.0134 (8)0.0041 (8)
C50.0608 (11)0.0499 (10)0.0464 (10)0.0273 (9)0.0151 (8)0.0099 (8)
C60.0641 (11)0.0518 (10)0.0480 (10)0.0311 (9)0.0104 (9)0.0082 (8)
C70.0740 (15)0.0635 (14)0.0905 (17)0.0127 (11)0.0392 (13)0.0200 (12)
C80.0462 (10)0.0597 (12)0.0715 (13)0.0167 (9)0.0195 (9)0.0058 (10)
C90.0828 (18)0.088 (2)0.180 (3)0.0567 (16)0.061 (2)0.038 (2)
C100.112 (2)0.086 (2)0.150 (3)0.0586 (19)0.037 (2)0.0105 (19)
C110.0403 (8)0.0421 (9)0.0494 (10)0.0171 (7)0.0170 (7)0.0064 (7)
C120.0666 (12)0.0487 (11)0.0581 (12)0.0187 (9)0.0066 (10)0.0087 (9)
C130.0690 (14)0.0758 (15)0.0564 (12)0.0245 (12)0.0022 (10)0.0014 (11)
C140.0588 (12)0.0558 (13)0.0766 (15)0.0026 (10)0.0148 (11)0.0080 (11)
C150.0806 (16)0.0443 (12)0.0954 (18)0.0020 (11)0.0115 (14)0.0139 (12)
C160.0650 (13)0.0484 (11)0.0705 (13)0.0143 (10)0.0104 (10)0.0174 (10)
C170.0714 (13)0.0622 (12)0.0508 (11)0.0388 (10)0.0160 (9)0.0127 (9)
C180.0697 (12)0.0682 (13)0.0441 (10)0.0422 (11)0.0064 (9)0.0055 (9)
C190.0897 (16)0.0763 (14)0.0588 (12)0.0526 (13)0.0189 (11)0.0164 (11)
C200.109 (2)0.0881 (17)0.0676 (14)0.0677 (16)0.0141 (14)0.0181 (12)
C210.0910 (17)0.0959 (18)0.0632 (13)0.0684 (15)0.0039 (12)0.0043 (13)
C220.0688 (13)0.0962 (17)0.0486 (11)0.0526 (13)0.0013 (9)0.0021 (11)
C230.0686 (13)0.0753 (14)0.0477 (11)0.0430 (11)0.0056 (9)0.0059 (9)
Geometric parameters (Å, º) top
S1—C61.743 (2)C10—H10A0.9600
S1—C11.750 (2)C10—H10B0.9600
Cl1—C221.734 (3)C10—H10C0.9600
N1—C11.269 (2)C11—C161.370 (3)
N1—C41.413 (3)C11—C121.376 (3)
N2—C11.369 (2)C12—C131.378 (3)
N2—C51.384 (2)C12—H120.9300
N2—C21.474 (2)C13—C141.366 (3)
O1—C51.202 (2)C13—H130.9300
O2—C81.322 (3)C14—C151.357 (4)
O2—C91.461 (3)C14—H140.9300
O3—C81.190 (3)C15—C161.372 (3)
C2—C31.518 (3)C15—H150.9300
C2—C111.517 (2)C16—H160.9300
C2—H20.9800C17—C181.458 (3)
C3—C41.345 (3)C17—H170.9300
C3—C81.473 (3)C18—C231.390 (3)
C4—C71.495 (3)C18—C191.395 (3)
C5—C61.489 (3)C19—C201.382 (3)
C6—C171.338 (3)C19—H190.9300
C7—H7A0.9600C20—C211.370 (4)
C7—H7B0.9600C20—H200.9300
C7—H7C0.9600C21—C221.374 (4)
C9—C101.432 (4)C21—H210.9300
C9—H9A0.9700C22—C231.380 (3)
C9—H9B0.9700C23—H230.9300
C6—S1—C191.75 (9)H10A—C10—H10B109.5
C1—N1—C4116.63 (16)C9—C10—H10C109.5
C1—N2—C5116.72 (15)H10A—C10—H10C109.5
C1—N2—C2120.56 (15)H10B—C10—H10C109.5
C5—N2—C2121.87 (14)C16—C11—C12118.73 (17)
C8—O2—C9118.6 (2)C16—C11—C2120.90 (17)
N1—C1—N2126.94 (18)C12—C11—C2120.36 (16)
N1—C1—S1121.68 (15)C11—C12—C13120.4 (2)
N2—C1—S1111.37 (14)C11—C12—H12119.8
N2—C2—C3108.40 (14)C13—C12—H12119.8
N2—C2—C11109.88 (14)C14—C13—C12120.0 (2)
C3—C2—C11111.85 (14)C14—C13—H13120.0
N2—C2—H2108.9C12—C13—H13120.0
C3—C2—H2108.9C15—C14—C13119.6 (2)
C11—C2—H2108.9C15—C14—H14120.2
C4—C3—C8121.80 (18)C13—C14—H14120.2
C4—C3—C2121.61 (17)C14—C15—C16120.7 (2)
C8—C3—C2116.49 (17)C14—C15—H15119.7
C3—C4—N1122.24 (17)C16—C15—H15119.7
C3—C4—C7125.8 (2)C11—C16—C15120.4 (2)
N1—C4—C7111.97 (18)C11—C16—H16119.8
O1—C5—N2123.64 (17)C15—C16—H16119.8
O1—C5—C6126.67 (18)C6—C17—C18130.16 (19)
N2—C5—C6109.69 (16)C6—C17—H17114.9
C17—C6—C5120.14 (18)C18—C17—H17114.9
C17—C6—S1129.37 (15)C23—C18—C19118.59 (19)
C5—C6—S1110.45 (14)C23—C18—C17117.16 (19)
C4—C7—H7A109.5C19—C18—C17124.2 (2)
C4—C7—H7B109.5C20—C19—C18120.3 (2)
H7A—C7—H7B109.5C20—C19—H19119.8
C4—C7—H7C109.5C18—C19—H19119.8
H7A—C7—H7C109.5C21—C20—C19120.9 (2)
H7B—C7—H7C109.5C21—C20—H20119.6
O3—C8—O2122.0 (2)C19—C20—H20119.6
O3—C8—C3126.6 (2)C20—C21—C22118.8 (2)
O2—C8—C3111.39 (17)C20—C21—H21120.6
C10—C9—O2110.2 (2)C22—C21—H21120.6
C10—C9—H9A109.6C21—C22—C23121.7 (2)
O2—C9—H9A109.6C21—C22—Cl1119.69 (17)
C10—C9—H9B109.6C23—C22—Cl1118.6 (2)
O2—C9—H9B109.6C22—C23—C18119.7 (2)
H9A—C9—H9B108.1C22—C23—H23120.2
C9—C10—H10A109.5C18—C23—H23120.2
C9—C10—H10B109.5
C4—N1—C1—N24.5 (3)C9—O2—C8—C3176.0 (2)
C4—N1—C1—S1174.31 (14)C4—C3—C8—O37.8 (4)
C5—N2—C1—N1179.82 (18)C2—C3—C8—O3168.5 (2)
C2—N2—C1—N110.6 (3)C4—C3—C8—O2171.50 (19)
C5—N2—C1—S10.9 (2)C2—C3—C8—O212.2 (3)
C2—N2—C1—S1170.54 (12)C8—O2—C9—C10117.2 (3)
C6—S1—C1—N1179.77 (17)N2—C2—C11—C16120.27 (19)
C6—S1—C1—N21.29 (14)C3—C2—C11—C16119.3 (2)
C1—N2—C2—C320.5 (2)N2—C2—C11—C1261.0 (2)
C5—N2—C2—C3170.42 (15)C3—C2—C11—C1259.4 (2)
C1—N2—C2—C11101.98 (18)C16—C11—C12—C131.6 (3)
C5—N2—C2—C1167.1 (2)C2—C11—C12—C13179.69 (19)
N2—C2—C3—C418.8 (2)C11—C12—C13—C142.2 (3)
C11—C2—C3—C4102.5 (2)C12—C13—C14—C151.1 (4)
N2—C2—C3—C8164.91 (16)C13—C14—C15—C160.6 (4)
C11—C2—C3—C873.8 (2)C12—C11—C16—C150.1 (3)
C8—C3—C4—N1177.36 (17)C2—C11—C16—C15178.6 (2)
C2—C3—C4—N16.5 (3)C14—C15—C16—C111.2 (4)
C8—C3—C4—C71.9 (3)C5—C6—C17—C18176.23 (19)
C2—C3—C4—C7174.21 (19)S1—C6—C17—C181.3 (4)
C1—N1—C4—C36.4 (3)C6—C17—C18—C23175.3 (2)
C1—N1—C4—C7173.01 (18)C6—C17—C18—C195.1 (4)
C1—N2—C5—O1178.87 (18)C23—C18—C19—C201.2 (3)
C2—N2—C5—O19.4 (3)C17—C18—C19—C20179.2 (2)
C1—N2—C5—C60.0 (2)C18—C19—C20—C210.9 (4)
C2—N2—C5—C6169.41 (15)C19—C20—C21—C220.0 (4)
O1—C5—C6—C171.8 (3)C20—C21—C22—C230.5 (3)
N2—C5—C6—C17176.99 (17)C20—C21—C22—Cl1178.66 (18)
O1—C5—C6—S1179.79 (17)C21—C22—C23—C180.2 (3)
N2—C5—C6—S11.0 (2)Cl1—C22—C23—C18178.96 (15)
C1—S1—C6—C17176.5 (2)C19—C18—C23—C220.6 (3)
C1—S1—C6—C51.29 (14)C17—C18—C23—C22179.71 (18)
C9—O2—C8—O34.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.493.287 (3)143
C19—H19···S10.932.503.210 (3)133
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H19ClN2O3S
Mr438.92
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2650 (3), 10.3291 (4), 13.5655 (5)
α, β, γ (°)94.129 (2), 100.837 (2), 111.812 (2)
V3)1043.15 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.47 × 0.35 × 0.2
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.867, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
18826, 3677, 3111
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.06
No. of reflections3677
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.493.287 (3)143
C19—H19···S10.932.503.210 (3)133
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India, for the intensity data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2006). Acta Cryst. E62, o5871–o5873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMonks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. & Boyd, M. (1991). J. Natl Cancer Inst. 83, 757–766.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Dimarco, J. D., Hedberg, J., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119–129.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWinter, C. A., Risley, E. A. & Nuss, G. W. (1962). Proc. Soc. Exp. Biol. Med. 111, 544–547.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds