metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Pyridino-15-crown-5-κ5N,O,O′,O′′,O′′′)bis­­(thio­cyanato-κN)manganese(II)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: dougroup@163.com

(Received 21 November 2007; accepted 11 March 2008; online 14 March 2008)

The title complex, [Mn(NCS)2(C13H19NO4)] {systematic name: [3,6,9,12-tetra­oxa-18-aza­bicyclo­[12.3.1]octa­cosa-14(18),15,17-triene-κ5N,O,O′,O′′,O′′′]bis­(thio­cyanato-κN)manganese(I­I)}, was obtained by the reaction of MnCl2·4H2O and NaSCN with pyridino-15-crown-5. The Mn2+ center has a distorted penta­gonal bipyramidal coordination geometry, coordinated by four O atoms and one N atom of the pyridino-15-crown-5 mol­ecule, and by the N atoms of the two NCS ligands.

Related literature

For the coordination ability of pyridine crown ethers with transition metals, see: Lamb et al. (1980[Lamb, J. D., Izatt, R. M., Swain, C. S. & Christensen, J. J. (1980). J. Am. Chem. Soc. 102, 475-479.]). For Mn—N(NCS) and Mn—O bond-length data, see: Wei et al. (1997[Wei, Y. H., Dai, Y. & Huang, B. B. (1997). Chem. J. Chin. Univ. 18, 193-195.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C13H19NO4)]

  • Mr = 424.39

  • Monoclinic, P 21 /c

  • a = 15.211 (5) Å

  • b = 15.789 (5) Å

  • c = 7.868 (2) Å

  • β = 98.667 (4)°

  • V = 1868.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 273 (2) K

  • 0.42 × 0.35 × 0.31 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.690, Tmax = 0.756

  • 9681 measured reflections

  • 3294 independent reflections

  • 2266 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.04

  • 3294 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crown ethers, especially those containing one or more pyridine units have special coordination abilities with transition metal ions (Lamb et al., 1980). To the best of our knowledge, this is the first crystal structure of the P15—C-5 complex. We report here the synthesis and structure of an Mn2+ complex with the P15—C-5 ligand. The title complex consists of one Mn2+ ion bound to one P15—C-5 and two NCS- ligands. The Mn2+ ion is coordinated by four O atoms, one N atom of the P15—C-5 and two N atoms of the NCS- ligands. The O1, O2, O3, O4, N1 atoms of the P15—C-5 crown ether are approximately co-planar and the two NCS- ligands occupy the axial sites to form a distorted pentagonal bipyramid. Every O—Mn—O (or N) bond angle in the plane is nearly 72°, indicating that Mn2+ is situated at the center of the pentagon and the N,O atoms are located on the five corners. The average Mn—O [2.260 (3) Å] and Mn—N(NCS) [2.191 (3) Å] bond lengths are slightly bigger than the corresponding values in the complex [Mn(15—C-5)](SCN)2 [average 2.232 (5)Å and 2.130 (6) Å, respectively] (Wei et al., 1997).

Related literature top

For the coordination ability of pyridine crown ether with transition metals, see: Lamb et al. (1980). For Mn—N(NCS) and Mn—O bond-length data, see: Wei et al. (1997).

Experimental top

To a solution of pyridino-15-crown-5 (0.1265 g, 0.5 mmol) in 5 ml 1,2-dichloroethane was added 5 ml of an aqueous solution of MnCl2.4H2O (0.394 g, 2 mmol) and NaSCN (0.80 g, 1 mmol). The mixture was stirred for 2 hrs at room temperature and then separated. Single crystals of (1) were obtained by evaporation of the substrate (m.p. 447–449 K). Analysis calculated for C15H19MnN3O4S2: C 42.45, H 4.48, N 9.91%; found: C 42.39, H 4.38, N 10.10%.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.97 Å (aromatic) or 0.97Å (methylene) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[3,6,9,12-tetraoxa-18-azabicyclo[12.3.1]octacosa- 14 (18),15,17-triene-κ5N,O,O',O'',O''']bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C13H19NO4)]F(000) = 876
Mr = 424.39Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.211 (5) ÅCell parameters from 2838 reflections
b = 15.789 (5) Åθ = 2.6–23.5°
c = 7.868 (2) ŵ = 0.95 mm1
β = 98.667 (4)°T = 273 K
V = 1868.0 (10) Å3Block, colorless
Z = 40.42 × 0.35 × 0.31 mm
Data collection top
Bruker SMART
diffractometer
3294 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1518
Tmin = 0.690, Tmax = 0.756k = 1818
9681 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0368P)2 + 2.3622P]
where P = (Fo2 + 2Fc2)/3
3294 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Mn(NCS)2(C13H19NO4)]V = 1868.0 (10) Å3
Mr = 424.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.211 (5) ŵ = 0.95 mm1
b = 15.789 (5) ÅT = 273 K
c = 7.868 (2) Å0.42 × 0.35 × 0.31 mm
β = 98.667 (4)°
Data collection top
Bruker SMART
diffractometer
3294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2266 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.756Rint = 0.035
9681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
3294 reflectionsΔρmin = 0.48 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.74410 (4)0.96629 (4)0.17191 (7)0.04475 (19)
S10.51780 (7)0.82256 (8)0.45275 (15)0.0685 (3)
S20.85210 (10)1.19638 (8)0.11436 (17)0.0796 (4)
N10.85451 (18)0.92824 (19)0.3697 (4)0.0412 (7)
N20.6473 (2)0.8938 (2)0.2869 (4)0.0575 (7)
N30.8384 (2)1.0415 (2)0.0450 (4)0.0566 (7)
O10.75950 (17)1.06277 (16)0.3868 (3)0.0526 (7)
O20.80310 (17)0.84282 (16)0.0915 (3)0.0516 (7)
O30.68245 (17)0.94099 (19)0.1028 (3)0.0591 (7)
O40.63527 (17)1.06201 (18)0.1082 (4)0.0622 (8)
C10.7964 (3)1.0295 (3)0.5502 (5)0.0608 (11)
H1A0.75031.00270.60420.073*
H1B0.82271.07470.62450.073*
C20.8661 (2)0.9658 (2)0.5227 (4)0.0459 (9)
C30.9378 (3)0.9460 (3)0.6468 (5)0.0596 (11)
H30.94510.97190.75420.072*
C40.9980 (3)0.8868 (3)0.6068 (6)0.0661 (12)
H41.04680.87250.68770.079*
C50.9863 (3)0.8492 (3)0.4484 (5)0.0576 (11)
H51.02700.80960.42010.069*
C60.9129 (2)0.8712 (2)0.3317 (5)0.0440 (9)
C70.8949 (3)0.8344 (3)0.1544 (5)0.0577 (11)
H7A0.92960.86400.07930.069*
H7B0.91160.77510.15750.069*
C80.7770 (3)0.8223 (3)0.0868 (5)0.0674 (12)
H8A0.78080.76170.10400.081*
H8B0.81570.85040.15640.081*
C90.6835 (3)0.8517 (3)0.1365 (6)0.0748 (14)
H9A0.66350.84060.25740.090*
H9B0.64440.82220.06970.090*
C100.5985 (3)0.9822 (4)0.1445 (6)0.0759 (14)
H10A0.55330.95200.09400.091*
H10B0.58080.98390.26820.091*
C110.6091 (3)1.0704 (3)0.0733 (6)0.0761 (14)
H11A0.65411.10090.12400.091*
H11B0.55341.10120.09790.091*
C120.6526 (3)1.1394 (3)0.2025 (6)0.0741 (13)
H12A0.59911.17360.19270.089*
H12B0.69851.17160.15820.089*
C130.6826 (3)1.1154 (3)0.3863 (6)0.0703 (13)
H13A0.69761.16550.45590.084*
H13B0.63611.08470.43190.084*
C140.5933 (3)0.8648 (3)0.3547 (5)0.0575 (7)
C150.8454 (3)1.1064 (3)0.0202 (5)0.0566 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0393 (3)0.0494 (4)0.0448 (3)0.0020 (3)0.0038 (2)0.0014 (3)
S10.0508 (6)0.0893 (9)0.0677 (7)0.0094 (6)0.0163 (5)0.0039 (6)
S20.1000 (10)0.0599 (8)0.0809 (9)0.0263 (7)0.0198 (7)0.0050 (6)
N10.0364 (16)0.0466 (18)0.0405 (17)0.0005 (14)0.0049 (13)0.0040 (14)
N20.0462 (17)0.0603 (18)0.0659 (18)0.0026 (13)0.0079 (13)0.0037 (13)
N30.0511 (14)0.075 (2)0.0435 (15)0.0143 (15)0.0065 (12)0.0042 (13)
O10.0518 (16)0.0525 (16)0.0554 (16)0.0106 (13)0.0145 (13)0.0077 (13)
O20.0526 (16)0.0547 (16)0.0474 (15)0.0010 (13)0.0069 (12)0.0103 (12)
O30.0454 (16)0.076 (2)0.0520 (16)0.0081 (14)0.0062 (12)0.0020 (14)
O40.0485 (16)0.0656 (19)0.0708 (19)0.0135 (14)0.0037 (14)0.0110 (15)
C10.068 (3)0.073 (3)0.043 (2)0.004 (2)0.013 (2)0.008 (2)
C20.050 (2)0.051 (2)0.0370 (19)0.0083 (18)0.0083 (17)0.0059 (17)
C30.067 (3)0.067 (3)0.041 (2)0.024 (2)0.005 (2)0.0091 (19)
C40.048 (2)0.070 (3)0.074 (3)0.010 (2)0.010 (2)0.029 (2)
C50.046 (2)0.056 (3)0.068 (3)0.0039 (19)0.001 (2)0.018 (2)
C60.040 (2)0.040 (2)0.052 (2)0.0001 (17)0.0067 (17)0.0092 (17)
C70.053 (3)0.057 (3)0.064 (3)0.014 (2)0.014 (2)0.004 (2)
C80.084 (3)0.064 (3)0.054 (3)0.004 (2)0.008 (2)0.018 (2)
C90.080 (3)0.086 (4)0.054 (3)0.026 (3)0.004 (2)0.018 (2)
C100.047 (3)0.116 (4)0.059 (3)0.006 (3)0.010 (2)0.011 (3)
C110.047 (3)0.100 (4)0.077 (3)0.016 (3)0.004 (2)0.030 (3)
C120.061 (3)0.060 (3)0.103 (4)0.026 (2)0.018 (3)0.008 (3)
C130.068 (3)0.061 (3)0.086 (3)0.018 (2)0.027 (3)0.012 (2)
C140.0462 (17)0.0603 (18)0.0659 (18)0.0026 (13)0.0079 (13)0.0037 (13)
C150.0511 (14)0.075 (2)0.0435 (15)0.0143 (15)0.0065 (12)0.0042 (13)
Geometric parameters (Å, º) top
Mn1—N22.168 (3)C3—C41.377 (6)
Mn1—N12.195 (3)C3—H30.9300
Mn1—N32.213 (3)C4—C51.368 (6)
Mn1—O42.242 (3)C4—H40.9300
Mn1—O32.259 (3)C5—C61.380 (5)
Mn1—O12.262 (3)C5—H50.9300
Mn1—O22.276 (3)C6—C71.497 (5)
S1—C141.620 (4)C7—H7A0.9700
S2—C151.612 (5)C7—H7B0.9700
N1—C21.329 (4)C8—C91.490 (6)
N1—C61.330 (4)C8—H8A0.9700
N2—C141.140 (5)C8—H8B0.9700
N3—C151.158 (5)C9—H9A0.9700
O1—C11.423 (5)C9—H9B0.9700
O1—C131.433 (5)C10—C111.501 (7)
O2—C71.415 (4)C10—H10A0.9700
O2—C81.436 (5)C10—H10B0.9700
O3—C101.426 (5)C11—H11A0.9700
O3—C91.435 (5)C11—H11B0.9700
O4—C111.430 (5)C12—C131.498 (6)
O4—C121.433 (5)C12—H12A0.9700
C1—C21.500 (5)C12—H12B0.9700
C1—H1A0.9700C13—H13A0.9700
C1—H1B0.9700C13—H13B0.9700
C2—C31.386 (5)
N2—Mn1—N193.15 (12)C3—C4—H4119.9
N2—Mn1—N3177.51 (12)C4—C5—C6118.6 (4)
N1—Mn1—N389.32 (12)C4—C5—H5120.7
N2—Mn1—O485.63 (12)C6—C5—H5120.7
N1—Mn1—O4143.47 (11)N1—C6—C5121.4 (4)
N3—Mn1—O492.55 (12)N1—C6—C7116.0 (3)
N2—Mn1—O395.50 (11)C5—C6—C7122.6 (4)
N1—Mn1—O3142.50 (11)O2—C7—C6108.8 (3)
N3—Mn1—O382.35 (11)O2—C7—H7A109.9
O4—Mn1—O373.69 (11)C6—C7—H7A109.9
N2—Mn1—O192.52 (12)O2—C7—H7B109.9
N1—Mn1—O170.86 (10)C6—C7—H7B109.9
N3—Mn1—O188.56 (11)H7A—C7—H7B108.3
O4—Mn1—O172.72 (10)O2—C8—C9107.4 (3)
O3—Mn1—O1144.69 (10)O2—C8—H8A110.2
N2—Mn1—O289.15 (11)C9—C8—H8A110.2
N1—Mn1—O270.79 (10)O2—C8—H8B110.2
N3—Mn1—O291.40 (12)C9—C8—H8B110.2
O4—Mn1—O2145.52 (10)H8A—C8—H8B108.5
O3—Mn1—O272.93 (10)O3—C9—C8107.1 (3)
O1—Mn1—O2141.65 (9)O3—C9—H9A110.3
C2—N1—C6120.2 (3)C8—C9—H9A110.3
C2—N1—Mn1120.2 (2)O3—C9—H9B110.3
C6—N1—Mn1119.4 (2)C8—C9—H9B110.3
C14—N2—Mn1171.8 (3)H9A—C9—H9B108.5
C15—N3—Mn1141.6 (3)O3—C10—C11107.2 (3)
C1—O1—C13115.3 (3)O3—C10—H10A110.3
C1—O1—Mn1114.1 (2)C11—C10—H10A110.3
C13—O1—Mn1113.3 (2)O3—C10—H10B110.3
C7—O2—C8115.7 (3)C11—C10—H10B110.3
C7—O2—Mn1113.1 (2)H10A—C10—H10B108.5
C8—O2—Mn1113.7 (2)O4—C11—C10106.5 (4)
C10—O3—C9116.1 (3)O4—C11—H11A110.4
C10—O3—Mn1111.6 (3)C10—C11—H11A110.4
C9—O3—Mn1109.6 (2)O4—C11—H11B110.4
C11—O4—C12116.1 (4)C10—C11—H11B110.4
C11—O4—Mn1111.8 (3)H11A—C11—H11B108.6
C12—O4—Mn1112.8 (2)O4—C12—C13106.8 (4)
O1—C1—C2108.0 (3)O4—C12—H12A110.4
O1—C1—H1A110.1C13—C12—H12A110.4
C2—C1—H1A110.1O4—C12—H12B110.4
O1—C1—H1B110.1C13—C12—H12B110.4
C2—C1—H1B110.1H12A—C12—H12B108.6
H1A—C1—H1B108.4O1—C13—C12106.2 (3)
N1—C2—C3121.4 (4)O1—C13—H13A110.5
N1—C2—C1115.4 (3)C12—C13—H13A110.5
C3—C2—C1123.2 (4)O1—C13—H13B110.5
C4—C3—C2118.1 (4)C12—C13—H13B110.5
C4—C3—H3120.9H13A—C13—H13B108.7
C2—C3—H3120.9N2—C14—S1179.1 (4)
C5—C4—C3120.3 (4)N3—C15—S2178.3 (4)
C5—C4—H4119.9

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C13H19NO4)]
Mr424.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)15.211 (5), 15.789 (5), 7.868 (2)
β (°) 98.667 (4)
V3)1868.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.42 × 0.35 × 0.31
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.690, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
9681, 3294, 2266
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.04
No. of reflections3294
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China, the Natural Science Foundation of Liaocheng University and Liaocheng University.

References

First citationLamb, J. D., Izatt, R. M., Swain, C. S. & Christensen, J. J. (1980). J. Am. Chem. Soc. 102, 475–479.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWei, Y. H., Dai, Y. & Huang, B. B. (1997). Chem. J. Chin. Univ. 18, 193–195.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds