metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m599-m600

[(2S)-2-(3,5-Di­chloro-2-oxido­benzyl­­idene­amino)-3-(4-hy­droxy­phen­yl)propionato-κ3O,N,O′](di­methyl­formamide-κO)copper(II)

aCollege of Chemistry and Chemical Engineering, Central South University, Changsha, HuNan 410083, People's Republic of China, bDepartment of Chemistry and Biology, Yu Lin Normal College, Yulin, Guangxi 537000, People's Republic of China, and cKey Laboratory of Medicinal Chemical Resources and Molecular Engineering, Ministry of Education, College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: tanmx00@163.com

(Received 5 January 2008; accepted 24 March 2008; online 29 March 2008)

In the title complex, [Cu(C16H11Cl2NO4)(C3H7NO)] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− {LH2 = (2S)-[2-(3,5-dichloro-2-hydroxy­benzyl­idene)­imino]-3-(4-hydroxy­phenyl)propionic acid} and one O atom from a dimethyl­formamide mol­ecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu⋯O 3.080 (1), Cu⋯Cl 3.269 (1) Å] and a three-dimensional network through O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li et al. (2008[Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52.]); Zhang, Li et al. (2007[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]); Zhang, Feng et al. (2007a[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156-m1157.],b[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535-m536.]). For related literature, see: Xia et al. (2007[Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353-m355.]); Liu et al. (2007[Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156-m158.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Zordan et al. (2005[Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H11Cl2NO4)(C3H7NO)]

  • Mr = 488.79

  • Orthorhombic, P 21 21 21

  • a = 5.8646 (16) Å

  • b = 13.220 (2) Å

  • c = 26.850 (3) Å

  • V = 2081.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 298 (2) K

  • 0.48 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.532, Tmax = 0.786

  • 10650 measured reflections

  • 3638 independent reflections

  • 2915 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.148

  • S = 1.04

  • 3638 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1505 Friedel pairs

  • Flack parameter: 0.04 (3)

Table 1
Selected geometric parameters (Å, °)

Cu1—O4 1.875 (5)
Cu1—O1 1.931 (5)
Cu1—N1 1.934 (5)
Cu1—O5 1.954 (4)
O4—Cu1—O1 169.0 (2)
O4—Cu1—N1 94.2 (2)
O1—Cu1—N1 84.5 (2)
O4—Cu1—O5 90.2 (2)
O1—Cu1—O5 91.9 (2)
N1—Cu1—O5 174.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.87 2.661 (7) 163
C17—H17⋯O4 0.93 2.27 2.743 (8) 111
C18—H18B⋯O1ii 0.96 2.54 3.421 (10) 150
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogens have a ubiquitous presence in both inorganic and organic chemistry, serving as mondentate or bridging ligands for a wide variety of d-block, f-block, and main group metals as well being common substituents in a large number of organic compounds. Most frequently they lie at the periphery of molecules. The resultant steric accessibility has the potential for halogenated compounds to be attractive targets for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in intermolecular interactions. Indeed, interest in packing arrangements of halogenated compounds goes back many years to what Schmidt called the chloro effect, wherein the presence of chloro substituents on aromatic compounds frequently resulted in stacking arrangements with a resultant short (ca 4 Å) crystallographic axis. (Cohen et al., 1964; Zordan et al., 2005; Cohen et al., 1964; Desiraju, 1989; Zhang, Li et al., 2007). Herein, we chose LH2 as ligand system, and obtained a new mononuclear copper complex [Cu(L)(C3H7NO)] (1).

The title compound, (I), is a chiral CuII complex containing a dimethylformamide and a chiral ligand constructed from 3,5-Dichloro-2-hydroxy-benzaldehyde and 2-Amino-3-(4-hydroxy-phenyl)-propionic acid. The asymmetric unit of (I) shows a complex consisting of one CuII atom, one L2- ligand and one dimethylformamide (Fig. 1). The Cu atom is coordinated by two oxygen atoms and one N atom from one tridentate L2- ligand, to yield a slightly distorted planar geometry with bond lengths Cu1—O1, Cu1—O4, Cu1—O5 and Cu1—N1 1.931 (5), 1.875 (5), 1.954 (4) and 1.934 (5) Å, respectively; and bond angles (cis-angles are in the range of 84.5 (2)–91.9 (2) °, but all trans-angles are 169.0 (2)–174.3 (2) °) (Table 2).

As expected, all other bond distances and angles are within normal range. The structure forms a one-dimensional chain (Fig. 2) through weak coordination bonds (Cu1—O2i, 3.080 (1) Å, Cu1—Cl1ii, 3.269 (1) Å, symmetry codes: i: 1 + x, y, z; ii: -1 + x, y, z) and a three-dimensional network via weak hydrogen bonds: (O3—H3···O2i, 2.661 (7) Å, symmetry codes: i: 1 - x, 1/2 + y, 3/2 - z) and C—H···O hydrogen bond (C17—H17···O4, 2.743 (8) Å, C18—H18B···O1ii, 2.536 (4) Å, symmetry code: ii: 1/2 + x,-1/2 - y,2 - z) (Fig. 3).

Related literature top

For related structures, see: Li et al. (2008); Zhang, Li et al. (2007); Zhang, Feng et al. (2007a,b). For related literature, see: Xia et al. (2007); Liu et al. (2007); Cohen et al. (1964); Desiraju (1989); Zordan et al., 2005.

Experimental top

3,5-Dichloro-2-hydroxy-benzaldehyde(0.382 g, 2.0 mmol) and 2-Amino-3-(4-hydroxy-phenyl)-propionic acid (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to yield a yellow solution. To this was added a solution of CuSO4.5H2O (0.5 g, 2 mmol) in a mixture of 2 ml DMF and 10 ml me thanol. The mixture was refluxed for 1 h, and then the blue solution was filtered. Blue single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature. Yield: 89.6% (based on Copper). Elemental analysis for [Cu(C16H11Cl2NO4)(C3H7NO)] calculated: C 46.69, H 3.71, N 5.73%; found: C 46.61, H 3.84, N 5.67%.

Refinement top

All hydrogen atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3) or 0.93 Å (aromatic rings), and with Uiso(H) = 1.2 Ueq(aromatic ring) or Uiso(H) = 1.5 Ueq(CH3), O—H distance: 0.82 Å with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. hydrogen atoms have been omitted.
[Figure 2] Fig. 2. one-dimensional chain of (I).
[Figure 3] Fig. 3. The three-dimensional network of (I) through hydrogen bonds.
(2S)-[2-(3,5-Dichloro-2-oxidobenzylideneamino)-3-(4-hydroxyphenyl)propionato- κ3O,N,O'](dimethylformamide-κO)copper(II) top
Crystal data top
[Cu(C16H11Cl2NO4)(C3H7NO)]F(000) = 996
Mr = 488.79Dx = 1.560 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4089 reflections
a = 5.8646 (16) Åθ = 2.3–23.8°
b = 13.220 (2) ŵ = 1.34 mm1
c = 26.850 (3) ÅT = 298 K
V = 2081.7 (7) Å3Prism, blue
Z = 40.48 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube2915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.532, Tmax = 0.786k = 1512
10650 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3638 reflectionsΔρmax = 0.50 e Å3
262 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1505 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
[Cu(C16H11Cl2NO4)(C3H7NO)]V = 2081.7 (7) Å3
Mr = 488.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8646 (16) ŵ = 1.34 mm1
b = 13.220 (2) ÅT = 298 K
c = 26.850 (3) Å0.48 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3638 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2915 reflections with I > 2σ(I)
Tmin = 0.532, Tmax = 0.786Rint = 0.098
10650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.148Δρmax = 0.50 e Å3
S = 1.04Δρmin = 0.54 e Å3
3638 reflectionsAbsolute structure: Flack (1983), with 1505 Friedel pairs
262 parametersAbsolute structure parameter: 0.04 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.87095 (14)0.01109 (5)0.92554 (2)0.0398 (2)
Cl11.5356 (3)0.15751 (14)0.99080 (6)0.0542 (5)
Cl21.5314 (5)0.4447 (2)0.84884 (10)0.1123 (10)
N10.7954 (8)0.0937 (4)0.86843 (16)0.0341 (12)
N21.2035 (10)0.1364 (5)1.03525 (19)0.0502 (15)
O10.5867 (8)0.0565 (3)0.91109 (13)0.0447 (11)
O20.2837 (8)0.0471 (4)0.86065 (16)0.0507 (12)
O30.9847 (9)0.2916 (4)0.64815 (17)0.0663 (15)
H30.88570.33350.64200.099*
O41.1115 (8)0.0946 (3)0.94609 (13)0.0426 (10)
O50.9417 (9)0.0841 (4)0.97899 (16)0.0566 (14)
C10.4783 (12)0.0227 (4)0.8738 (2)0.0371 (14)
C20.5969 (10)0.0579 (4)0.84153 (18)0.0335 (13)
H20.49210.11450.83570.040*
C30.6629 (11)0.0092 (4)0.79128 (18)0.0413 (15)
H3A0.77940.04160.79710.050*
H3B0.53050.02490.77760.050*
C40.7505 (11)0.0844 (5)0.7537 (2)0.0390 (15)
C50.6177 (12)0.1646 (5)0.7384 (2)0.0470 (16)
H50.47400.17260.75250.056*
C60.6887 (12)0.2333 (5)0.7032 (2)0.0478 (18)
H60.59190.28500.69300.057*
C70.9055 (11)0.2249 (5)0.6832 (2)0.0436 (16)
C81.0373 (13)0.1453 (5)0.6970 (2)0.0552 (18)
H81.17930.13690.68220.066*
C90.9657 (12)0.0762 (5)0.7326 (2)0.0477 (17)
H91.06250.02410.74240.057*
C100.8988 (10)0.1759 (4)0.85633 (19)0.0335 (13)
H100.83730.21300.83010.040*
C111.1005 (11)0.2157 (4)0.87951 (19)0.0367 (14)
C121.1995 (9)0.1712 (4)0.9226 (2)0.0346 (13)
C131.4061 (11)0.2142 (5)0.93978 (19)0.0372 (14)
C141.5016 (12)0.2978 (5)0.9188 (2)0.0527 (18)
H141.63340.32590.93220.063*
C151.4005 (14)0.3402 (5)0.8774 (3)0.062 (2)
C161.2032 (12)0.3018 (5)0.8584 (3)0.0508 (18)
H161.13540.33290.83110.061*
C171.1375 (15)0.0875 (5)0.9947 (3)0.0558 (18)
H171.24860.05310.97670.067*
C181.0416 (14)0.1899 (7)1.0655 (3)0.073 (2)
H18A1.00660.15051.09450.110*
H18B1.10530.25371.07540.110*
H18C0.90480.20131.04670.110*
C191.4387 (14)0.1337 (7)1.0521 (3)0.078 (3)
H19A1.53350.10671.02610.118*
H19B1.48810.20101.06010.118*
H19C1.45020.09171.08110.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0472 (4)0.0363 (4)0.0360 (3)0.0017 (4)0.0031 (3)0.0056 (3)
Cl10.0510 (10)0.0635 (11)0.0481 (8)0.0039 (9)0.0144 (7)0.0136 (8)
Cl20.117 (2)0.0863 (18)0.133 (2)0.0606 (17)0.0291 (18)0.0441 (15)
N10.037 (3)0.031 (3)0.034 (2)0.009 (2)0.001 (2)0.002 (2)
N20.045 (3)0.056 (4)0.050 (3)0.007 (3)0.001 (3)0.022 (3)
O10.056 (3)0.039 (2)0.039 (2)0.010 (2)0.001 (2)0.0045 (17)
O20.043 (3)0.048 (3)0.060 (3)0.008 (2)0.004 (2)0.009 (2)
O30.070 (4)0.058 (3)0.071 (3)0.012 (3)0.034 (3)0.015 (3)
O40.047 (3)0.045 (2)0.0357 (19)0.005 (2)0.003 (2)0.0015 (18)
O50.060 (4)0.055 (3)0.055 (3)0.002 (3)0.006 (2)0.024 (2)
C10.043 (4)0.027 (3)0.041 (3)0.003 (3)0.001 (3)0.007 (3)
C20.024 (3)0.040 (3)0.037 (3)0.000 (3)0.005 (3)0.004 (2)
C30.049 (4)0.039 (3)0.036 (3)0.003 (4)0.003 (3)0.005 (3)
C40.043 (4)0.040 (4)0.034 (3)0.005 (3)0.007 (3)0.003 (3)
C50.036 (3)0.067 (4)0.038 (3)0.007 (4)0.003 (3)0.005 (3)
C60.046 (4)0.050 (4)0.047 (4)0.015 (3)0.003 (3)0.007 (3)
C70.043 (4)0.051 (4)0.037 (3)0.004 (4)0.005 (3)0.001 (3)
C80.048 (4)0.062 (5)0.056 (4)0.010 (4)0.014 (3)0.007 (3)
C90.041 (4)0.046 (4)0.056 (4)0.009 (3)0.007 (3)0.006 (3)
C100.032 (3)0.034 (3)0.034 (3)0.001 (3)0.000 (3)0.001 (2)
C110.038 (4)0.035 (3)0.037 (3)0.001 (3)0.004 (3)0.001 (2)
C120.027 (3)0.036 (3)0.041 (3)0.005 (3)0.006 (3)0.017 (3)
C130.035 (4)0.045 (4)0.032 (3)0.003 (3)0.001 (3)0.013 (2)
C140.045 (4)0.052 (4)0.061 (4)0.010 (4)0.005 (4)0.015 (3)
C150.060 (5)0.052 (4)0.073 (5)0.013 (4)0.001 (4)0.009 (4)
C160.050 (4)0.038 (4)0.064 (4)0.012 (3)0.002 (4)0.014 (3)
C170.055 (5)0.048 (4)0.065 (4)0.009 (4)0.001 (4)0.021 (3)
C180.063 (5)0.093 (6)0.064 (5)0.001 (5)0.003 (4)0.038 (4)
C190.055 (5)0.092 (7)0.088 (5)0.003 (5)0.017 (4)0.037 (5)
Geometric parameters (Å, º) top
Cu1—O41.875 (5)C5—C61.374 (9)
Cu1—O11.931 (5)C5—H50.9300
Cu1—N11.934 (5)C6—C71.385 (9)
Cu1—O51.954 (4)C6—H60.9300
Cl1—C131.736 (6)C7—C81.357 (9)
Cl2—C151.756 (7)C8—C91.387 (9)
N1—C101.286 (7)C8—H80.9300
N1—C21.449 (7)C9—H90.9300
N2—C171.324 (8)C10—C111.437 (8)
N2—C181.435 (9)C10—H100.9300
N2—C191.452 (9)C11—C161.407 (8)
O1—C11.267 (7)C11—C121.423 (8)
O2—C11.238 (7)C12—C131.416 (8)
O3—C71.371 (7)C13—C141.361 (9)
O3—H30.8200C14—C151.379 (10)
O4—C121.299 (7)C14—H140.9300
O5—C171.224 (9)C15—C161.362 (10)
C1—C21.540 (8)C16—H160.9300
C2—C31.545 (7)C17—H170.9300
C2—H20.9800C18—H18A0.9600
C3—C41.508 (8)C18—H18B0.9600
C3—H3A0.9700C18—H18C0.9600
C3—H3B0.9700C19—H19A0.9600
C4—C51.378 (9)C19—H19B0.9600
C4—C91.387 (9)C19—H19C0.9600
O4—Cu1—O1169.0 (2)C7—C8—C9121.8 (7)
O4—Cu1—N194.2 (2)C7—C8—H8119.1
O1—Cu1—N184.5 (2)C9—C8—H8119.1
O4—Cu1—O590.2 (2)C4—C9—C8120.3 (7)
O1—Cu1—O591.9 (2)C4—C9—H9119.9
N1—Cu1—O5174.3 (2)C8—C9—H9119.9
C10—N1—C2121.9 (5)N1—C10—C11126.1 (5)
C10—N1—Cu1124.7 (4)N1—C10—H10117.0
C2—N1—Cu1113.3 (4)C11—C10—H10117.0
C17—N2—C18120.8 (6)C16—C11—C12119.2 (6)
C17—N2—C19121.4 (7)C16—C11—C10118.3 (5)
C18—N2—C19117.7 (6)C12—C11—C10122.5 (5)
C1—O1—Cu1115.4 (4)O4—C12—C13119.7 (5)
C7—O3—H3109.5O4—C12—C11123.7 (5)
C12—O4—Cu1128.0 (4)C13—C12—C11116.6 (6)
C17—O5—Cu1118.4 (5)C14—C13—C12122.9 (6)
O2—C1—O1126.6 (6)C14—C13—Cl1119.8 (5)
O2—C1—C2115.8 (5)C12—C13—Cl1117.2 (5)
O1—C1—C2117.6 (5)C13—C14—C15119.2 (7)
N1—C2—C1107.9 (4)C13—C14—H14120.4
N1—C2—C3111.7 (5)C15—C14—H14120.4
C1—C2—C3108.4 (5)C16—C15—C14121.0 (7)
N1—C2—H2109.6C16—C15—Cl2120.1 (6)
C1—C2—H2109.6C14—C15—Cl2118.9 (6)
C3—C2—H2109.6C15—C16—C11121.0 (7)
C4—C3—C2113.3 (5)C15—C16—H16119.5
C4—C3—H3A108.9C11—C16—H16119.5
C2—C3—H3A108.9O5—C17—N2125.2 (7)
C4—C3—H3B108.9O5—C17—H17117.4
C2—C3—H3B108.9N2—C17—H17117.4
H3A—C3—H3B107.7N2—C18—H18A109.5
C5—C4—C9117.0 (6)N2—C18—H18B109.5
C5—C4—C3121.0 (6)H18A—C18—H18B109.5
C9—C4—C3122.1 (6)N2—C18—H18C109.5
C6—C5—C4122.8 (7)H18A—C18—H18C109.5
C6—C5—H5118.6H18B—C18—H18C109.5
C4—C5—H5118.6N2—C19—H19A109.5
C5—C6—C7119.4 (6)N2—C19—H19B109.5
C5—C6—H6120.3H19A—C19—H19B109.5
C7—C6—H6120.3N2—C19—H19C109.5
C8—C7—O3119.5 (6)H19A—C19—H19C109.5
C8—C7—C6118.6 (6)H19B—C19—H19C109.5
O3—C7—C6121.7 (6)
O4—Cu1—N1—C100.5 (5)O3—C7—C8—C9179.5 (6)
O1—Cu1—N1—C10168.5 (5)C6—C7—C8—C93.9 (11)
O4—Cu1—N1—C2176.4 (4)C5—C4—C9—C81.5 (10)
O1—Cu1—N1—C27.4 (3)C3—C4—C9—C8178.0 (6)
O4—Cu1—O1—C183.8 (9)C7—C8—C9—C42.9 (11)
N1—Cu1—O1—C10.1 (4)C2—N1—C10—C11177.8 (5)
O5—Cu1—O1—C1175.4 (4)Cu1—N1—C10—C116.6 (8)
O1—Cu1—O4—C1290.9 (9)N1—C10—C11—C16174.1 (6)
N1—Cu1—O4—C128.1 (5)N1—C10—C11—C125.7 (9)
O5—Cu1—O4—C12168.2 (5)Cu1—O4—C12—C13168.8 (4)
O4—Cu1—O5—C1726.4 (6)Cu1—O4—C12—C1110.8 (8)
O1—Cu1—O5—C17164.4 (6)C16—C11—C12—O4176.7 (5)
Cu1—O1—C1—O2172.3 (5)C10—C11—C12—O43.5 (8)
Cu1—O1—C1—C27.0 (6)C16—C11—C12—C133.7 (8)
C10—N1—C2—C1164.2 (5)C10—C11—C12—C13176.1 (5)
Cu1—N1—C2—C111.9 (5)O4—C12—C13—C14176.3 (5)
C10—N1—C2—C376.7 (7)C11—C12—C13—C144.1 (8)
Cu1—N1—C2—C3107.2 (4)O4—C12—C13—Cl12.3 (7)
O2—C1—C2—N1166.9 (5)C11—C12—C13—Cl1177.3 (4)
O1—C1—C2—N112.5 (7)C12—C13—C14—C153.4 (10)
O2—C1—C2—C371.9 (6)Cl1—C13—C14—C15178.1 (5)
O1—C1—C2—C3108.7 (5)C13—C14—C15—C162.2 (11)
N1—C2—C3—C469.3 (6)C13—C14—C15—Cl2177.3 (5)
C1—C2—C3—C4171.9 (5)C14—C15—C16—C112.0 (11)
C2—C3—C4—C559.0 (7)Cl2—C15—C16—C11177.5 (6)
C2—C3—C4—C9121.5 (6)C12—C11—C16—C152.8 (10)
C9—C4—C5—C61.3 (10)C10—C11—C16—C15177.0 (6)
C3—C4—C5—C6178.2 (6)Cu1—O5—C17—N2169.3 (5)
C4—C5—C6—C72.4 (10)C18—N2—C17—O51.1 (12)
C5—C6—C7—C83.6 (10)C19—N2—C17—O5178.0 (8)
C5—C6—C7—O3179.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.872.661 (7)163
C17—H17···O40.932.272.743 (8)111
C18—H18B···O1ii0.962.543.421 (10)150
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C16H11Cl2NO4)(C3H7NO)]
Mr488.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.8646 (16), 13.220 (2), 26.850 (3)
V3)2081.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.48 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.532, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
10650, 3638, 2915
Rint0.098
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.148, 1.04
No. of reflections3638
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.54
Absolute structureFlack (1983), with 1505 Friedel pairs
Absolute structure parameter0.04 (3)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O41.875 (5)Cu1—N11.934 (5)
Cu1—O11.931 (5)Cu1—O51.954 (4)
O4—Cu1—O1169.0 (2)O4—Cu1—O590.2 (2)
O4—Cu1—N194.2 (2)O1—Cu1—O591.9 (2)
O1—Cu1—N184.5 (2)N1—Cu1—O5174.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.872.661 (7)163
C17—H17···O40.932.272.743 (8)111
C18—H18B···O1ii0.962.543.421 (10)150
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+2.
 

Acknowledgements

We acknowledge financial support by the NSFC (grant No. 20561001) and the EDF of Guangxi (grant No. 200607LX067).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156–m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m599-m600
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds