metal-organic compounds
[(2S)-2-(3,5-Dichloro-2-oxidobenzylideneamino)-3-(4-hydroxyphenyl)propionato-κ3O,N,O′](dimethylformamide-κO)copper(II)
aCollege of Chemistry and Chemical Engineering, Central South University, Changsha, HuNan 410083, People's Republic of China, bDepartment of Chemistry and Biology, Yu Lin Normal College, Yulin, Guangxi 537000, People's Republic of China, and cKey Laboratory of Medicinal Chemical Resources and Molecular Engineering, Ministry of Education, College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: tanmx00@163.com
In the title complex, [Cu(C16H11Cl2NO4)(C3H7NO)] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− {LH2 = (2S)-[2-(3,5-dichloro-2-hydroxybenzylidene)imino]-3-(4-hydroxyphenyl)propionic acid} and one O atom from a dimethylformamide molecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu⋯O 3.080 (1), Cu⋯Cl 3.269 (1) Å] and a three-dimensional network through O—H⋯O and C—H⋯O hydrogen bonds.
Related literature
For related structures, see: Li et al. (2008); Zhang, Li et al. (2007); Zhang, Feng et al. (2007a,b). For related literature, see: Xia et al. (2007); Liu et al. (2007); Cohen et al. (1964); Desiraju (1989); Zordan et al. (2005).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808007939/rt2016sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808007939/rt2016Isup2.hkl
3,5-Dichloro-2-hydroxy-benzaldehyde(0.382 g, 2.0 mmol) and 2-Amino-3-(4-hydroxy-phenyl)-propionic acid (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to yield a yellow solution. To this was added a solution of CuSO4.5H2O (0.5 g, 2 mmol) in a mixture of 2 ml DMF and 10 ml me thanol. The mixture was refluxed for 1 h, and then the blue solution was filtered. Blue single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature. Yield: 89.6% (based on Copper). Elemental analysis for [Cu(C16H11Cl2NO4)(C3H7NO)] calculated: C 46.69, H 3.71, N 5.73%; found: C 46.61, H 3.84, N 5.67%.
All hydrogen atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3) or 0.93 Å (aromatic rings), and with Uiso(H) = 1.2 Ueq(aromatic ring) or Uiso(H) = 1.5 Ueq(CH3), O—H distance: 0.82 Å with Uiso(H) = 1.5 Ueq(O).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C16H11Cl2NO4)(C3H7NO)] | F(000) = 996 |
Mr = 488.79 | Dx = 1.560 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4089 reflections |
a = 5.8646 (16) Å | θ = 2.3–23.8° |
b = 13.220 (2) Å | µ = 1.34 mm−1 |
c = 26.850 (3) Å | T = 298 K |
V = 2081.7 (7) Å3 | Prism, blue |
Z = 4 | 0.48 × 0.20 × 0.18 mm |
Bruker SMART CCD area-detector diffractometer | 3638 independent reflections |
Radiation source: fine-focus sealed tube | 2915 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −6→6 |
Tmin = 0.532, Tmax = 0.786 | k = −15→12 |
10650 measured reflections | l = −31→31 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.148 | w = 1/[σ2(Fo2) + (0.0751P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3638 reflections | Δρmax = 0.50 e Å−3 |
262 parameters | Δρmin = −0.54 e Å−3 |
0 restraints | Absolute structure: Flack (1983), with 1505 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (3) |
[Cu(C16H11Cl2NO4)(C3H7NO)] | V = 2081.7 (7) Å3 |
Mr = 488.79 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.8646 (16) Å | µ = 1.34 mm−1 |
b = 13.220 (2) Å | T = 298 K |
c = 26.850 (3) Å | 0.48 × 0.20 × 0.18 mm |
Bruker SMART CCD area-detector diffractometer | 3638 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2915 reflections with I > 2σ(I) |
Tmin = 0.532, Tmax = 0.786 | Rint = 0.098 |
10650 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.148 | Δρmax = 0.50 e Å−3 |
S = 1.04 | Δρmin = −0.54 e Å−3 |
3638 reflections | Absolute structure: Flack (1983), with 1505 Friedel pairs |
262 parameters | Absolute structure parameter: 0.04 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.87095 (14) | 0.01109 (5) | 0.92554 (2) | 0.0398 (2) | |
Cl1 | 1.5356 (3) | 0.15751 (14) | 0.99080 (6) | 0.0542 (5) | |
Cl2 | 1.5314 (5) | 0.4447 (2) | 0.84884 (10) | 0.1123 (10) | |
N1 | 0.7954 (8) | 0.0937 (4) | 0.86843 (16) | 0.0341 (12) | |
N2 | 1.2035 (10) | −0.1364 (5) | 1.03525 (19) | 0.0502 (15) | |
O1 | 0.5867 (8) | −0.0565 (3) | 0.91109 (13) | 0.0447 (11) | |
O2 | 0.2837 (8) | −0.0471 (4) | 0.86065 (16) | 0.0507 (12) | |
O3 | 0.9847 (9) | 0.2916 (4) | 0.64815 (17) | 0.0663 (15) | |
H3 | 0.8857 | 0.3335 | 0.6420 | 0.099* | |
O4 | 1.1115 (8) | 0.0946 (3) | 0.94609 (13) | 0.0426 (10) | |
O5 | 0.9417 (9) | −0.0841 (4) | 0.97899 (16) | 0.0566 (14) | |
C1 | 0.4783 (12) | −0.0227 (4) | 0.8738 (2) | 0.0371 (14) | |
C2 | 0.5969 (10) | 0.0579 (4) | 0.84153 (18) | 0.0335 (13) | |
H2 | 0.4921 | 0.1145 | 0.8357 | 0.040* | |
C3 | 0.6629 (11) | 0.0092 (4) | 0.79128 (18) | 0.0413 (15) | |
H3A | 0.7794 | −0.0416 | 0.7971 | 0.050* | |
H3B | 0.5305 | −0.0249 | 0.7776 | 0.050* | |
C4 | 0.7505 (11) | 0.0844 (5) | 0.7537 (2) | 0.0390 (15) | |
C5 | 0.6177 (12) | 0.1646 (5) | 0.7384 (2) | 0.0470 (16) | |
H5 | 0.4740 | 0.1726 | 0.7525 | 0.056* | |
C6 | 0.6887 (12) | 0.2333 (5) | 0.7032 (2) | 0.0478 (18) | |
H6 | 0.5919 | 0.2850 | 0.6930 | 0.057* | |
C7 | 0.9055 (11) | 0.2249 (5) | 0.6832 (2) | 0.0436 (16) | |
C8 | 1.0373 (13) | 0.1453 (5) | 0.6970 (2) | 0.0552 (18) | |
H8 | 1.1793 | 0.1369 | 0.6822 | 0.066* | |
C9 | 0.9657 (12) | 0.0762 (5) | 0.7326 (2) | 0.0477 (17) | |
H9 | 1.0625 | 0.0241 | 0.7424 | 0.057* | |
C10 | 0.8988 (10) | 0.1759 (4) | 0.85633 (19) | 0.0335 (13) | |
H10 | 0.8373 | 0.2130 | 0.8301 | 0.040* | |
C11 | 1.1005 (11) | 0.2157 (4) | 0.87951 (19) | 0.0367 (14) | |
C12 | 1.1995 (9) | 0.1712 (4) | 0.9226 (2) | 0.0346 (13) | |
C13 | 1.4061 (11) | 0.2142 (5) | 0.93978 (19) | 0.0372 (14) | |
C14 | 1.5016 (12) | 0.2978 (5) | 0.9188 (2) | 0.0527 (18) | |
H14 | 1.6334 | 0.3259 | 0.9322 | 0.063* | |
C15 | 1.4005 (14) | 0.3402 (5) | 0.8774 (3) | 0.062 (2) | |
C16 | 1.2032 (12) | 0.3018 (5) | 0.8584 (3) | 0.0508 (18) | |
H16 | 1.1354 | 0.3329 | 0.8311 | 0.061* | |
C17 | 1.1375 (15) | −0.0875 (5) | 0.9947 (3) | 0.0558 (18) | |
H17 | 1.2486 | −0.0531 | 0.9767 | 0.067* | |
C18 | 1.0416 (14) | −0.1899 (7) | 1.0655 (3) | 0.073 (2) | |
H18A | 1.0066 | −0.1505 | 1.0945 | 0.110* | |
H18B | 1.1053 | −0.2537 | 1.0754 | 0.110* | |
H18C | 0.9048 | −0.2013 | 1.0467 | 0.110* | |
C19 | 1.4387 (14) | −0.1337 (7) | 1.0521 (3) | 0.078 (3) | |
H19A | 1.5335 | −0.1067 | 1.0261 | 0.118* | |
H19B | 1.4881 | −0.2010 | 1.0601 | 0.118* | |
H19C | 1.4502 | −0.0917 | 1.0811 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0472 (4) | 0.0363 (4) | 0.0360 (3) | −0.0017 (4) | −0.0031 (3) | 0.0056 (3) |
Cl1 | 0.0510 (10) | 0.0635 (11) | 0.0481 (8) | 0.0039 (9) | −0.0144 (7) | −0.0136 (8) |
Cl2 | 0.117 (2) | 0.0863 (18) | 0.133 (2) | −0.0606 (17) | −0.0291 (18) | 0.0441 (15) |
N1 | 0.037 (3) | 0.031 (3) | 0.034 (2) | 0.009 (2) | 0.001 (2) | −0.002 (2) |
N2 | 0.045 (3) | 0.056 (4) | 0.050 (3) | 0.007 (3) | −0.001 (3) | 0.022 (3) |
O1 | 0.056 (3) | 0.039 (2) | 0.039 (2) | −0.010 (2) | 0.001 (2) | 0.0045 (17) |
O2 | 0.043 (3) | 0.048 (3) | 0.060 (3) | −0.008 (2) | 0.004 (2) | −0.009 (2) |
O3 | 0.070 (4) | 0.058 (3) | 0.071 (3) | 0.012 (3) | 0.034 (3) | 0.015 (3) |
O4 | 0.047 (3) | 0.045 (2) | 0.0357 (19) | 0.005 (2) | −0.003 (2) | −0.0015 (18) |
O5 | 0.060 (4) | 0.055 (3) | 0.055 (3) | 0.002 (3) | −0.006 (2) | 0.024 (2) |
C1 | 0.043 (4) | 0.027 (3) | 0.041 (3) | 0.003 (3) | 0.001 (3) | −0.007 (3) |
C2 | 0.024 (3) | 0.040 (3) | 0.037 (3) | 0.000 (3) | −0.005 (3) | −0.004 (2) |
C3 | 0.049 (4) | 0.039 (3) | 0.036 (3) | −0.003 (4) | −0.003 (3) | −0.005 (3) |
C4 | 0.043 (4) | 0.040 (4) | 0.034 (3) | 0.005 (3) | −0.007 (3) | −0.003 (3) |
C5 | 0.036 (3) | 0.067 (4) | 0.038 (3) | 0.007 (4) | 0.003 (3) | 0.005 (3) |
C6 | 0.046 (4) | 0.050 (4) | 0.047 (4) | 0.015 (3) | 0.003 (3) | 0.007 (3) |
C7 | 0.043 (4) | 0.051 (4) | 0.037 (3) | 0.004 (4) | 0.005 (3) | 0.001 (3) |
C8 | 0.048 (4) | 0.062 (5) | 0.056 (4) | 0.010 (4) | 0.014 (3) | 0.007 (3) |
C9 | 0.041 (4) | 0.046 (4) | 0.056 (4) | 0.009 (3) | 0.007 (3) | −0.006 (3) |
C10 | 0.032 (3) | 0.034 (3) | 0.034 (3) | −0.001 (3) | 0.000 (3) | 0.001 (2) |
C11 | 0.038 (4) | 0.035 (3) | 0.037 (3) | 0.001 (3) | 0.004 (3) | −0.001 (2) |
C12 | 0.027 (3) | 0.036 (3) | 0.041 (3) | 0.005 (3) | 0.006 (3) | −0.017 (3) |
C13 | 0.035 (4) | 0.045 (4) | 0.032 (3) | 0.003 (3) | 0.001 (3) | −0.013 (2) |
C14 | 0.045 (4) | 0.052 (4) | 0.061 (4) | −0.010 (4) | −0.005 (4) | −0.015 (3) |
C15 | 0.060 (5) | 0.052 (4) | 0.073 (5) | −0.013 (4) | −0.001 (4) | 0.009 (4) |
C16 | 0.050 (4) | 0.038 (4) | 0.064 (4) | −0.012 (3) | −0.002 (4) | 0.014 (3) |
C17 | 0.055 (5) | 0.048 (4) | 0.065 (4) | 0.009 (4) | 0.001 (4) | 0.021 (3) |
C18 | 0.063 (5) | 0.093 (6) | 0.064 (5) | 0.001 (5) | 0.003 (4) | 0.038 (4) |
C19 | 0.055 (5) | 0.092 (7) | 0.088 (5) | 0.003 (5) | −0.017 (4) | 0.037 (5) |
Cu1—O4 | 1.875 (5) | C5—C6 | 1.374 (9) |
Cu1—O1 | 1.931 (5) | C5—H5 | 0.9300 |
Cu1—N1 | 1.934 (5) | C6—C7 | 1.385 (9) |
Cu1—O5 | 1.954 (4) | C6—H6 | 0.9300 |
Cl1—C13 | 1.736 (6) | C7—C8 | 1.357 (9) |
Cl2—C15 | 1.756 (7) | C8—C9 | 1.387 (9) |
N1—C10 | 1.286 (7) | C8—H8 | 0.9300 |
N1—C2 | 1.449 (7) | C9—H9 | 0.9300 |
N2—C17 | 1.324 (8) | C10—C11 | 1.437 (8) |
N2—C18 | 1.435 (9) | C10—H10 | 0.9300 |
N2—C19 | 1.452 (9) | C11—C16 | 1.407 (8) |
O1—C1 | 1.267 (7) | C11—C12 | 1.423 (8) |
O2—C1 | 1.238 (7) | C12—C13 | 1.416 (8) |
O3—C7 | 1.371 (7) | C13—C14 | 1.361 (9) |
O3—H3 | 0.8200 | C14—C15 | 1.379 (10) |
O4—C12 | 1.299 (7) | C14—H14 | 0.9300 |
O5—C17 | 1.224 (9) | C15—C16 | 1.362 (10) |
C1—C2 | 1.540 (8) | C16—H16 | 0.9300 |
C2—C3 | 1.545 (7) | C17—H17 | 0.9300 |
C2—H2 | 0.9800 | C18—H18A | 0.9600 |
C3—C4 | 1.508 (8) | C18—H18B | 0.9600 |
C3—H3A | 0.9700 | C18—H18C | 0.9600 |
C3—H3B | 0.9700 | C19—H19A | 0.9600 |
C4—C5 | 1.378 (9) | C19—H19B | 0.9600 |
C4—C9 | 1.387 (9) | C19—H19C | 0.9600 |
O4—Cu1—O1 | 169.0 (2) | C7—C8—C9 | 121.8 (7) |
O4—Cu1—N1 | 94.2 (2) | C7—C8—H8 | 119.1 |
O1—Cu1—N1 | 84.5 (2) | C9—C8—H8 | 119.1 |
O4—Cu1—O5 | 90.2 (2) | C4—C9—C8 | 120.3 (7) |
O1—Cu1—O5 | 91.9 (2) | C4—C9—H9 | 119.9 |
N1—Cu1—O5 | 174.3 (2) | C8—C9—H9 | 119.9 |
C10—N1—C2 | 121.9 (5) | N1—C10—C11 | 126.1 (5) |
C10—N1—Cu1 | 124.7 (4) | N1—C10—H10 | 117.0 |
C2—N1—Cu1 | 113.3 (4) | C11—C10—H10 | 117.0 |
C17—N2—C18 | 120.8 (6) | C16—C11—C12 | 119.2 (6) |
C17—N2—C19 | 121.4 (7) | C16—C11—C10 | 118.3 (5) |
C18—N2—C19 | 117.7 (6) | C12—C11—C10 | 122.5 (5) |
C1—O1—Cu1 | 115.4 (4) | O4—C12—C13 | 119.7 (5) |
C7—O3—H3 | 109.5 | O4—C12—C11 | 123.7 (5) |
C12—O4—Cu1 | 128.0 (4) | C13—C12—C11 | 116.6 (6) |
C17—O5—Cu1 | 118.4 (5) | C14—C13—C12 | 122.9 (6) |
O2—C1—O1 | 126.6 (6) | C14—C13—Cl1 | 119.8 (5) |
O2—C1—C2 | 115.8 (5) | C12—C13—Cl1 | 117.2 (5) |
O1—C1—C2 | 117.6 (5) | C13—C14—C15 | 119.2 (7) |
N1—C2—C1 | 107.9 (4) | C13—C14—H14 | 120.4 |
N1—C2—C3 | 111.7 (5) | C15—C14—H14 | 120.4 |
C1—C2—C3 | 108.4 (5) | C16—C15—C14 | 121.0 (7) |
N1—C2—H2 | 109.6 | C16—C15—Cl2 | 120.1 (6) |
C1—C2—H2 | 109.6 | C14—C15—Cl2 | 118.9 (6) |
C3—C2—H2 | 109.6 | C15—C16—C11 | 121.0 (7) |
C4—C3—C2 | 113.3 (5) | C15—C16—H16 | 119.5 |
C4—C3—H3A | 108.9 | C11—C16—H16 | 119.5 |
C2—C3—H3A | 108.9 | O5—C17—N2 | 125.2 (7) |
C4—C3—H3B | 108.9 | O5—C17—H17 | 117.4 |
C2—C3—H3B | 108.9 | N2—C17—H17 | 117.4 |
H3A—C3—H3B | 107.7 | N2—C18—H18A | 109.5 |
C5—C4—C9 | 117.0 (6) | N2—C18—H18B | 109.5 |
C5—C4—C3 | 121.0 (6) | H18A—C18—H18B | 109.5 |
C9—C4—C3 | 122.1 (6) | N2—C18—H18C | 109.5 |
C6—C5—C4 | 122.8 (7) | H18A—C18—H18C | 109.5 |
C6—C5—H5 | 118.6 | H18B—C18—H18C | 109.5 |
C4—C5—H5 | 118.6 | N2—C19—H19A | 109.5 |
C5—C6—C7 | 119.4 (6) | N2—C19—H19B | 109.5 |
C5—C6—H6 | 120.3 | H19A—C19—H19B | 109.5 |
C7—C6—H6 | 120.3 | N2—C19—H19C | 109.5 |
C8—C7—O3 | 119.5 (6) | H19A—C19—H19C | 109.5 |
C8—C7—C6 | 118.6 (6) | H19B—C19—H19C | 109.5 |
O3—C7—C6 | 121.7 (6) | ||
O4—Cu1—N1—C10 | −0.5 (5) | O3—C7—C8—C9 | 179.5 (6) |
O1—Cu1—N1—C10 | 168.5 (5) | C6—C7—C8—C9 | −3.9 (11) |
O4—Cu1—N1—C2 | −176.4 (4) | C5—C4—C9—C8 | −1.5 (10) |
O1—Cu1—N1—C2 | −7.4 (3) | C3—C4—C9—C8 | 178.0 (6) |
O4—Cu1—O1—C1 | 83.8 (9) | C7—C8—C9—C4 | 2.9 (11) |
N1—Cu1—O1—C1 | 0.1 (4) | C2—N1—C10—C11 | −177.8 (5) |
O5—Cu1—O1—C1 | −175.4 (4) | Cu1—N1—C10—C11 | 6.6 (8) |
O1—Cu1—O4—C12 | −90.9 (9) | N1—C10—C11—C16 | 174.1 (6) |
N1—Cu1—O4—C12 | −8.1 (5) | N1—C10—C11—C12 | −5.7 (9) |
O5—Cu1—O4—C12 | 168.2 (5) | Cu1—O4—C12—C13 | −168.8 (4) |
O4—Cu1—O5—C17 | −26.4 (6) | Cu1—O4—C12—C11 | 10.8 (8) |
O1—Cu1—O5—C17 | 164.4 (6) | C16—C11—C12—O4 | 176.7 (5) |
Cu1—O1—C1—O2 | −172.3 (5) | C10—C11—C12—O4 | −3.5 (8) |
Cu1—O1—C1—C2 | 7.0 (6) | C16—C11—C12—C13 | −3.7 (8) |
C10—N1—C2—C1 | −164.2 (5) | C10—C11—C12—C13 | 176.1 (5) |
Cu1—N1—C2—C1 | 11.9 (5) | O4—C12—C13—C14 | −176.3 (5) |
C10—N1—C2—C3 | 76.7 (7) | C11—C12—C13—C14 | 4.1 (8) |
Cu1—N1—C2—C3 | −107.2 (4) | O4—C12—C13—Cl1 | 2.3 (7) |
O2—C1—C2—N1 | 166.9 (5) | C11—C12—C13—Cl1 | −177.3 (4) |
O1—C1—C2—N1 | −12.5 (7) | C12—C13—C14—C15 | −3.4 (10) |
O2—C1—C2—C3 | −71.9 (6) | Cl1—C13—C14—C15 | 178.1 (5) |
O1—C1—C2—C3 | 108.7 (5) | C13—C14—C15—C16 | 2.2 (11) |
N1—C2—C3—C4 | −69.3 (6) | C13—C14—C15—Cl2 | −177.3 (5) |
C1—C2—C3—C4 | 171.9 (5) | C14—C15—C16—C11 | −2.0 (11) |
C2—C3—C4—C5 | −59.0 (7) | Cl2—C15—C16—C11 | 177.5 (6) |
C2—C3—C4—C9 | 121.5 (6) | C12—C11—C16—C15 | 2.8 (10) |
C9—C4—C5—C6 | 1.3 (10) | C10—C11—C16—C15 | −177.0 (6) |
C3—C4—C5—C6 | −178.2 (6) | Cu1—O5—C17—N2 | 169.3 (5) |
C4—C5—C6—C7 | −2.4 (10) | C18—N2—C17—O5 | −1.1 (12) |
C5—C6—C7—C8 | 3.6 (10) | C19—N2—C17—O5 | −178.0 (8) |
C5—C6—C7—O3 | −179.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 1.87 | 2.661 (7) | 163 |
C17—H17···O4 | 0.93 | 2.27 | 2.743 (8) | 111 |
C18—H18B···O1ii | 0.96 | 2.54 | 3.421 (10) | 150 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1/2, −y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C16H11Cl2NO4)(C3H7NO)] |
Mr | 488.79 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 5.8646 (16), 13.220 (2), 26.850 (3) |
V (Å3) | 2081.7 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.48 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.532, 0.786 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10650, 3638, 2915 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.148, 1.04 |
No. of reflections | 3638 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.54 |
Absolute structure | Flack (1983), with 1505 Friedel pairs |
Absolute structure parameter | 0.04 (3) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O4 | 1.875 (5) | Cu1—N1 | 1.934 (5) |
Cu1—O1 | 1.931 (5) | Cu1—O5 | 1.954 (4) |
O4—Cu1—O1 | 169.0 (2) | O4—Cu1—O5 | 90.2 (2) |
O4—Cu1—N1 | 94.2 (2) | O1—Cu1—O5 | 91.9 (2) |
O1—Cu1—N1 | 84.5 (2) | N1—Cu1—O5 | 174.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 1.87 | 2.661 (7) | 163 |
C17—H17···O4 | 0.93 | 2.27 | 2.743 (8) | 111 |
C18—H18B···O1ii | 0.96 | 2.54 | 3.421 (10) | 150 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1/2, −y−1/2, −z+2. |
Acknowledgements
We acknowledge financial support by the NSFC (grant No. 20561001) and the EDF of Guangxi (grant No. 200607LX067).
References
Bruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Cohen, M. D., Schmidt, G. M. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013. CrossRef Web of Science Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156–m158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogens have a ubiquitous presence in both inorganic and organic chemistry, serving as mondentate or bridging ligands for a wide variety of d-block, f-block, and main group metals as well being common substituents in a large number of organic compounds. Most frequently they lie at the periphery of molecules. The resultant steric accessibility has the potential for halogenated compounds to be attractive targets for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in intermolecular interactions. Indeed, interest in packing arrangements of halogenated compounds goes back many years to what Schmidt called the chloro effect, wherein the presence of chloro substituents on aromatic compounds frequently resulted in stacking arrangements with a resultant short (ca 4 Å) crystallographic axis. (Cohen et al., 1964; Zordan et al., 2005; Cohen et al., 1964; Desiraju, 1989; Zhang, Li et al., 2007). Herein, we chose LH2 as ligand system, and obtained a new mononuclear copper complex [Cu(L)(C3H7NO)] (1).
The title compound, (I), is a chiral CuII complex containing a dimethylformamide and a chiral ligand constructed from 3,5-Dichloro-2-hydroxy-benzaldehyde and 2-Amino-3-(4-hydroxy-phenyl)-propionic acid. The asymmetric unit of (I) shows a complex consisting of one CuII atom, one L2- ligand and one dimethylformamide (Fig. 1). The Cu atom is coordinated by two oxygen atoms and one N atom from one tridentate L2- ligand, to yield a slightly distorted planar geometry with bond lengths Cu1—O1, Cu1—O4, Cu1—O5 and Cu1—N1 1.931 (5), 1.875 (5), 1.954 (4) and 1.934 (5) Å, respectively; and bond angles (cis-angles are in the range of 84.5 (2)–91.9 (2) °, but all trans-angles are 169.0 (2)–174.3 (2) °) (Table 2).
As expected, all other bond distances and angles are within normal range. The structure forms a one-dimensional chain (Fig. 2) through weak coordination bonds (Cu1—O2i, 3.080 (1) Å, Cu1—Cl1ii, 3.269 (1) Å, symmetry codes: i: 1 + x, y, z; ii: -1 + x, y, z) and a three-dimensional network via weak hydrogen bonds: (O3—H3···O2i, 2.661 (7) Å, symmetry codes: i: 1 - x, 1/2 + y, 3/2 - z) and C—H···O hydrogen bond (C17—H17···O4, 2.743 (8) Å, C18—H18B···O1ii, 2.536 (4) Å, symmetry code: ii: 1/2 + x,-1/2 - y,2 - z) (Fig. 3).