organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Meth­oxy­benzyl­­idene)-4-nitro­benzo­hydrazide methanol solvate

aLiaoning University of Traditional Chinese Medicine, Shenyang 110032, People's Republic of China, bLiaoning Food and Drug Administration, Shenyang 110003, People's Republic of China, and cSchool of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: diaoyiwen@126.com, caiqianmail@sina.com

(Received 24 February 2008; accepted 1 March 2008; online 5 March 2008)

The title compound, C15H13N3O4·CH4O, was synthesized from the reaction of 4-methoxy­benzaldehyde with 4-nitro­benzohydrazide in methanol. The benzene rings of the Schiff base mol­ecule are nearly coplanar, making a dihedral angle of 7.0 (3)°. The methanol solvent mol­ecules are linked to the Schiff base mol­ecules by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming chains running parallel to the b axis.

Related literature

For related structures, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.], 2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4·CH4O

  • Mr = 331.33

  • Monoclinic, P 21 /n

  • a = 14.719 (3) Å

  • b = 6.631 (2) Å

  • c = 18.002 (3) Å

  • β = 113.17 (3)°

  • V = 1615.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.27 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.977

  • 9171 measured reflections

  • 3351 independent reflections

  • 1493 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.172

  • S = 0.95

  • 3351 reflections

  • 224 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5 0.897 (10) 2.049 (13) 2.921 (3) 164 (3)
O5—H5⋯N3i 0.82 2.56 3.167 (3) 133
O5—H5⋯O3i 0.82 2.10 2.863 (3) 154
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been found to have potential pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). Recently, a few Schiff base compounds derived from the reaction of aldehydes with benzohydrazides have been reported (Diao et al., 2008; Diao et al., 2007; Diao, 2007; Li et al., 2007; Huang et al., 2007). As a further study of such compounds, we report here the structure of the title compound.

The title compound (Fig. 1) consists of a Schiff base molecule and a lattice methanol molecule. The Schiff base molecule is nearly planar with the dihedral angle between the two phenyl rings of 7.0 (3)°. The dihedral angle between the C1—C6 phenyl ring and the O1/N1/O2 nitryl plane is 5.1 (3)°. The torsion angles C9—C8—N3—N2 and C4—C7—N2—N3 are 1.4 (3) and 1.6 (3)°, respectively. The methanol molecules are linked to the Schiff base molecules by N–H···O, O–H···N and O–H···O hydrogen bonds (Table 1) forming chains running parallel to the b axis.

Related literature top

For related structures, see: Brückner et al. (2000); Diao (2007); Diao et al. (2007, 2008); Harrop et al. (2003); Huang et al. (2007); Li et al. (2007); Ren et al. (2002).

Experimental top

4-Methoxybenzaldehyde (0.1 mmol, 13.6 mg) and 4-nitrobenzohydrazide (0.1 mmol, 18.1 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After keeping the solution in air for five days, yellow block-like crystals were formed on slow evaporation of the solvent.

Refinement top

H2A was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.96 Å, O–H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
N'-(4-Methoxybenzylidene)-4-nitrobenzohydrazide methanol solvate top
Crystal data top
C15H13N3O4·CH4OF(000) = 696
Mr = 331.33Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 670 reflections
a = 14.719 (3) Åθ = 2.4–24.5°
b = 6.631 (2) ŵ = 0.10 mm1
c = 18.002 (3) ÅT = 298 K
β = 113.17 (3)°Block, yellow
V = 1615.3 (7) Å30.27 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3351 independent reflections
Radiation source: fine-focus sealed tube1493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.973, Tmax = 0.977k = 87
9171 measured reflectionsl = 1722
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3351 reflectionsΔρmax = 0.17 e Å3
224 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (12)
Crystal data top
C15H13N3O4·CH4OV = 1615.3 (7) Å3
Mr = 331.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.719 (3) ŵ = 0.10 mm1
b = 6.631 (2) ÅT = 298 K
c = 18.002 (3) Å0.27 × 0.23 × 0.23 mm
β = 113.17 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3351 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1493 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.977Rint = 0.065
9171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.17 e Å3
3351 reflectionsΔρmin = 0.17 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3893 (2)0.1141 (5)0.43054 (18)0.0628 (8)
N20.37993 (17)0.4842 (3)0.09474 (14)0.0480 (6)
N30.38196 (16)0.5979 (3)0.03071 (14)0.0481 (6)
O10.35466 (19)0.0546 (4)0.41861 (15)0.0913 (9)
O20.4269 (2)0.1901 (4)0.49761 (15)0.0915 (9)
O30.38954 (18)0.7649 (3)0.16870 (13)0.0712 (7)
O40.37929 (16)0.8238 (3)0.31725 (12)0.0643 (6)
O50.34226 (17)0.0632 (3)0.04415 (13)0.0643 (6)
H50.36460.03900.07080.096*
C10.3883 (2)0.2315 (4)0.36036 (17)0.0474 (8)
C20.4211 (2)0.4269 (5)0.37219 (18)0.0587 (8)
H20.44420.48470.42340.070*
C30.4188 (2)0.5348 (5)0.30657 (18)0.0570 (8)
H30.44020.66800.31360.068*
C40.38535 (19)0.4503 (4)0.23005 (16)0.0433 (7)
C50.3527 (2)0.2511 (4)0.22030 (18)0.0500 (8)
H5A0.33030.19160.16950.060*
C60.3537 (2)0.1412 (4)0.28616 (18)0.0520 (8)
H60.33110.00880.27990.062*
C70.3851 (2)0.5799 (4)0.16214 (17)0.0484 (7)
C80.3756 (2)0.4971 (4)0.03121 (18)0.0492 (7)
H80.36860.35780.03050.059*
C90.37877 (19)0.5910 (4)0.10321 (16)0.0432 (7)
C100.3555 (2)0.4751 (5)0.17273 (17)0.0525 (8)
H100.33930.33980.17170.063*
C110.3559 (2)0.5571 (4)0.24324 (18)0.0535 (8)
H110.33890.47830.28950.064*
C120.3818 (2)0.7574 (4)0.24426 (17)0.0475 (7)
C130.4075 (2)0.8738 (4)0.17570 (17)0.0497 (8)
H130.42631.00750.17620.060*
C140.4054 (2)0.7901 (4)0.10576 (17)0.0495 (8)
H140.42210.86950.05970.059*
C150.3969 (2)1.0303 (5)0.3251 (2)0.0705 (10)
H15A0.34801.10960.31560.106*
H15B0.39331.05600.37870.106*
H15C0.46141.06570.28640.106*
C160.2426 (3)0.0315 (5)0.0070 (2)0.0854 (11)
H16A0.20530.00160.02500.128*
H16B0.23800.07960.04250.128*
H16C0.21660.15080.03830.128*
H2A0.377 (2)0.3496 (16)0.0892 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0707 (18)0.072 (2)0.0519 (19)0.0074 (16)0.0308 (16)0.0221 (16)
N20.0678 (16)0.0380 (13)0.0453 (15)0.0013 (12)0.0298 (13)0.0086 (12)
N30.0634 (15)0.0436 (14)0.0426 (15)0.0012 (12)0.0266 (13)0.0089 (12)
O10.1079 (19)0.0897 (19)0.0742 (18)0.0230 (16)0.0335 (15)0.0321 (15)
O20.137 (2)0.096 (2)0.0475 (16)0.0115 (16)0.0432 (16)0.0156 (15)
O30.128 (2)0.0367 (12)0.0565 (14)0.0021 (12)0.0437 (14)0.0032 (10)
O40.0934 (16)0.0610 (14)0.0450 (13)0.0019 (12)0.0342 (12)0.0065 (11)
O50.0883 (16)0.0432 (13)0.0554 (15)0.0041 (12)0.0218 (13)0.0050 (10)
C10.0540 (18)0.0532 (19)0.0393 (18)0.0052 (15)0.0230 (15)0.0101 (15)
C20.081 (2)0.060 (2)0.0378 (18)0.0057 (18)0.0263 (16)0.0037 (15)
C30.080 (2)0.0474 (18)0.0464 (19)0.0068 (16)0.0277 (17)0.0011 (15)
C40.0526 (17)0.0442 (17)0.0360 (17)0.0037 (14)0.0208 (14)0.0049 (13)
C50.0615 (19)0.0465 (18)0.0440 (18)0.0040 (15)0.0229 (16)0.0025 (14)
C60.0664 (19)0.0466 (18)0.050 (2)0.0042 (15)0.0306 (16)0.0039 (15)
C70.0634 (19)0.0404 (18)0.0434 (18)0.0016 (15)0.0231 (16)0.0035 (15)
C80.0605 (19)0.0452 (17)0.0458 (18)0.0016 (15)0.0253 (16)0.0052 (15)
C90.0489 (16)0.0420 (16)0.0404 (17)0.0004 (14)0.0194 (14)0.0058 (13)
C100.0657 (19)0.0420 (17)0.052 (2)0.0042 (14)0.0247 (16)0.0003 (15)
C110.072 (2)0.0487 (19)0.0405 (18)0.0036 (16)0.0231 (16)0.0042 (15)
C120.0551 (18)0.0543 (19)0.0362 (17)0.0042 (15)0.0214 (15)0.0052 (15)
C130.0638 (19)0.0410 (17)0.0476 (18)0.0050 (14)0.0254 (16)0.0036 (14)
C140.0620 (19)0.0472 (19)0.0417 (18)0.0036 (15)0.0231 (15)0.0004 (14)
C150.087 (2)0.066 (2)0.067 (2)0.0062 (19)0.040 (2)0.0200 (18)
C160.092 (3)0.075 (3)0.087 (3)0.002 (2)0.032 (2)0.000 (2)
Geometric parameters (Å, º) top
N1—O11.213 (3)C5—H5A0.9300
N1—O21.222 (3)C6—H60.9300
N1—C11.479 (4)C8—C91.455 (4)
N2—C71.345 (3)C8—H80.9300
N2—N31.388 (3)C9—C141.383 (4)
N2—H2A0.897 (10)C9—C101.392 (4)
N3—C81.271 (3)C10—C111.383 (4)
O3—C71.232 (3)C10—H100.9300
O4—C121.372 (3)C11—C121.384 (4)
O4—C151.411 (3)C11—H110.9300
O5—C161.407 (4)C12—C131.376 (4)
O5—H50.8200C13—C141.388 (4)
C1—C61.366 (4)C13—H130.9300
C1—C21.370 (4)C14—H140.9300
C2—C31.370 (4)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.386 (4)C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.392 (4)C16—H16B0.9600
C4—C71.493 (4)C16—H16C0.9600
C5—C61.387 (4)
O1—N1—O2123.4 (3)C9—C8—H8118.7
O1—N1—C1118.2 (3)C14—C9—C10118.0 (3)
O2—N1—C1118.4 (3)C14—C9—C8123.2 (3)
C7—N2—N3118.7 (2)C10—C9—C8118.8 (3)
C7—N2—H2A123 (2)C11—C10—C9121.3 (3)
N3—N2—H2A118 (2)C11—C10—H10119.3
C8—N3—N2115.1 (2)C9—C10—H10119.3
C12—O4—C15118.0 (2)C10—C11—C12119.3 (3)
C16—O5—H5109.5C10—C11—H11120.3
C6—C1—C2122.6 (3)C12—C11—H11120.3
C6—C1—N1118.6 (3)O4—C12—C13125.0 (3)
C2—C1—N1118.7 (3)O4—C12—C11114.6 (3)
C1—C2—C3118.2 (3)C13—C12—C11120.4 (3)
C1—C2—H2120.9C12—C13—C14119.5 (3)
C3—C2—H2120.9C12—C13—H13120.2
C2—C3—C4121.6 (3)C14—C13—H13120.2
C2—C3—H3119.2C9—C14—C13121.3 (3)
C4—C3—H3119.2C9—C14—H14119.3
C3—C4—C5118.6 (3)C13—C14—H14119.3
C3—C4—C7117.8 (3)O4—C15—H15A109.5
C5—C4—C7123.6 (3)O4—C15—H15B109.5
C6—C5—C4120.2 (3)H15A—C15—H15B109.5
C6—C5—H5A119.9O4—C15—H15C109.5
C4—C5—H5A119.9H15A—C15—H15C109.5
C1—C6—C5118.7 (3)H15B—C15—H15C109.5
C1—C6—H6120.7O5—C16—H16A109.5
C5—C6—H6120.7O5—C16—H16B109.5
O3—C7—N2122.6 (3)H16A—C16—H16B109.5
O3—C7—C4120.8 (3)O5—C16—H16C109.5
N2—C7—C4116.6 (2)H16A—C16—H16C109.5
N3—C8—C9122.6 (3)H16B—C16—H16C109.5
N3—C8—H8118.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.90 (1)2.05 (1)2.921 (3)164 (3)
O5—H5···N3i0.822.563.167 (3)133
O5—H5···O3i0.822.102.863 (3)154
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4·CH4O
Mr331.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.719 (3), 6.631 (2), 18.002 (3)
β (°) 113.17 (3)
V3)1615.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.973, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
9171, 3351, 1493
Rint0.065
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.172, 0.95
No. of reflections3351
No. of parameters224
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.897 (10)2.049 (13)2.921 (3)164 (3)
O5—H5···N3i0.822.563.167 (3)132.5
O5—H5···O3i0.822.102.863 (3)153.9
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This project is supported by a research grant from Dalian Medical University.

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds