metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(1H-imidazole-κN3)nickel(II) bis­­(3-thienylacetate)

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 14 December 2007; accepted 7 March 2008; online 14 March 2008)

In the title complex, [Ni(C3H4N2)6](C6H5O2S)2, the NiII atom displays an octa­hedral coordination geometry, defined by six N atoms from the imidazole ligands. Inter­molecular N—H⋯O hydrogen-bonding inter­actions between the cationic complex and 3-thienylacetate anions form a three-dimensional network architecture. The two 3-thienylacetate anions are disordered, with occupancy ratios of circa 0.774 (1):0.226 (1) and ca 0.753 (5):0.247 (5).

Related literature

For related literature, see: Ng et al. (2001[Ng, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291-292.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H4N2)6](C6H5O2S)2

  • Mr = 749.52

  • Triclinic, [P \overline 1]

  • a = 9.2483 (3) Å

  • b = 9.8529 (3) Å

  • c = 19.6365 (6) Å

  • α = 84.696 (1)°

  • β = 88.380 (2)°

  • γ = 80.157 (2)°

  • V = 1755.30 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 296 (2) K

  • 0.20 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 0.924

  • 13333 measured reflections

  • 7140 independent reflections

  • 5337 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.06

  • 7140 reflections

  • 480 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O4i 0.86 2.56 3.124 (3) 124
N12—H12⋯O3i 0.86 1.97 2.826 (3) 170
N10—H10A⋯O3ii 0.86 1.88 2.718 (3) 164
N8—H8A⋯O2iii 0.86 1.81 2.660 (3) 170
N4—H4A⋯O4iv 0.86 1.89 2.688 (3) 153
N2—H2⋯O1v 0.86 1.91 2.749 (3) 166
N6—H6⋯O1ii 0.86 1.90 2.711 (3) 156
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 3-thienylacetate complexes, it has been found that the 3-thienylacetate functions as a multidentate ligand [Ng et al. (2001)], with versatile binding and coordination modes. In this study, we expected to obtain a complex composed of nickel(II), 3-thienylacetate and imidazole by hydrothermal reaction. Unfortunately, the NiII atom was not coordinated by 3-thienylacetate. We finally obtained the title structure, (I), composed of cations and anions.

As shown in Fig. 1, the crystal structure of the title complex consists of [Ni(C3H4N2)6]2+ and two different 3-thienylacetate anions. The NiII atom is coordinated by six different imidazole molecules in a slightly distorted octahedral geometry. The cationic complexes link the 3-thienylacetate anions by intermolecular N—H···O hydrogen bonding interactions (table 1) to form a three-dimensional network structure (Fig. 2).

Related literature top

For related literature, see: Ng et al. (2001).

Experimental top

A mixture of nickel chloride (1 mmol), 3-thienylacetic acid (1 mmol), imidazole (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Two independent 3-thienylacetate anions are disordered and they are split into two sets of positions, with occupancy ratios of 0.774 (1):0.226 (1) and 0.753 (5):0.247 (5), respectively. Due to the significant overlap of the disordered atoms the following restraints were applied: The two rings C1 C2 C3 C4 S1 (and ring C7 C8 C9 C10 S2) and their disordered counterparts were each restrained to be flat and their equivalent bond distances were restrained to be the same within a standard deviation of 0.01 Å. All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å (aromatic ring), and 0.97 Å (methylene); N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.
Hexakis(1H-imidazole-κN3)nickel(II) bis(3-thienylacetate) top
Crystal data top
[Ni(C3H4N2)6](C6H5O2S)2Z = 2
Mr = 749.52F(000) = 780
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2483 (3) ÅCell parameters from 5680 reflections
b = 9.8529 (3) Åθ = 1.4–28.0°
c = 19.6365 (6) ŵ = 0.73 mm1
α = 84.696 (1)°T = 296 K
β = 88.380 (2)°Block, blue
γ = 80.157 (2)°0.20 × 0.16 × 0.11 mm
V = 1755.30 (9) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
7140 independent reflections
Radiation source: fine-focus sealed tube5337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.5°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.869, Tmax = 0.925k = 512
13333 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.8694P]
where P = (Fo2 + 2Fc2)/3
7140 reflections(Δ/σ)max = 0.001
480 parametersΔρmax = 0.39 e Å3
38 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C3H4N2)6](C6H5O2S)2γ = 80.157 (2)°
Mr = 749.52V = 1755.30 (9) Å3
Triclinic, P1Z = 2
a = 9.2483 (3) ÅMo Kα radiation
b = 9.8529 (3) ŵ = 0.73 mm1
c = 19.6365 (6) ÅT = 296 K
α = 84.696 (1)°0.20 × 0.16 × 0.11 mm
β = 88.380 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
7140 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5337 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.925Rint = 0.025
13333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04038 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
7140 reflectionsΔρmin = 0.27 e Å3
480 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4131 (4)0.4287 (3)0.66425 (18)0.0627 (9)
H10.38880.36940.63390.075*
C20.5286 (3)0.4973 (3)0.65584 (14)0.0484 (7)
C30.5372 (4)0.5773 (4)0.71015 (18)0.0681 (9)
H30.61120.63020.71110.082*
C50.6323 (4)0.4848 (4)0.59608 (18)0.0710 (10)
H5A0.61630.40620.57270.085*
H5B0.73150.46410.61350.085*
C60.6230 (3)0.6089 (3)0.54369 (13)0.0474 (7)
C80.3563 (4)0.2371 (3)0.99004 (16)0.0598 (8)
H80.45490.24480.99200.072*
C90.2493 (3)0.3502 (3)0.96818 (14)0.0500 (7)
C100.1119 (4)0.3137 (4)0.97049 (19)0.0683 (9)
H100.02700.37480.95760.082*
C110.2791 (4)0.4927 (3)0.94645 (14)0.0559 (8)
H11A0.19760.54210.91920.067*
H11B0.36610.48490.91740.067*
C120.3015 (3)0.5780 (3)1.00487 (13)0.0427 (6)
C130.7099 (3)1.1011 (3)0.59500 (13)0.0444 (6)
H130.77581.15960.58040.053*
C140.5169 (4)1.0069 (4)0.60100 (17)0.0663 (9)
H140.42540.98510.59280.080*
C150.6119 (3)0.9449 (3)0.64942 (17)0.0637 (9)
H150.59580.87220.68080.076*
C160.9193 (3)0.6510 (3)0.75680 (15)0.0517 (7)
H160.98820.62230.72340.062*
C170.8696 (4)0.5679 (3)0.80681 (16)0.0601 (8)
H170.89840.47270.81450.072*
C180.7630 (3)0.7782 (3)0.81614 (13)0.0446 (6)
H180.70260.85390.83270.053*
C191.1837 (3)0.8033 (3)0.63842 (14)0.0460 (7)
H191.24800.82920.66840.055*
N61.2259 (3)0.7234 (3)0.58772 (11)0.0532 (6)
H61.31450.68870.57720.064*
C210.9893 (3)0.7778 (3)0.58834 (13)0.0478 (7)
H210.89120.78350.57720.057*
C220.8396 (3)1.1189 (3)0.84289 (14)0.0485 (7)
H220.93261.08650.86060.058*
C230.6170 (4)1.2253 (4)0.83415 (17)0.0744 (11)
H230.52701.27940.84290.089*
C240.6547 (3)1.1572 (3)0.77818 (16)0.0613 (9)
H240.59361.15600.74150.074*
C251.0829 (3)1.1481 (3)0.60810 (14)0.0462 (6)
H251.12091.07230.58430.055*
C261.0367 (4)1.3572 (3)0.63700 (17)0.0623 (8)
H261.03491.45160.63820.075*
C270.9656 (4)1.2747 (3)0.68025 (16)0.0554 (8)
H270.90571.30400.71680.066*
C281.1230 (3)0.8441 (3)0.83343 (13)0.0452 (6)
H281.06290.77890.84550.054*
C291.2965 (4)0.9652 (4)0.83702 (17)0.0705 (10)
H291.37721.00020.85070.085*
C301.2145 (3)1.0096 (4)0.78075 (16)0.0600 (8)
H301.23021.08130.74870.072*
N10.7348 (2)1.0039 (2)0.64586 (10)0.0367 (5)
N20.5794 (3)1.1062 (2)0.56680 (11)0.0480 (6)
H20.54251.16240.53320.058*
N30.8519 (2)0.7861 (2)0.76277 (10)0.0391 (5)
N40.7707 (3)0.6476 (3)0.84356 (12)0.0549 (6)
H4A0.72140.62010.87830.066*
N51.0399 (2)0.8411 (2)0.64094 (10)0.0390 (5)
C201.1030 (4)0.7072 (3)0.55600 (15)0.0567 (8)
H201.09840.65650.51870.068*
N70.9954 (2)1.1416 (2)0.66199 (10)0.0389 (5)
N81.1108 (3)1.2744 (3)0.59158 (13)0.0551 (6)
H8A1.16571.29930.55830.066*
N91.1042 (2)0.9323 (2)0.77832 (10)0.0419 (5)
N101.2373 (3)0.8589 (3)0.86970 (12)0.0527 (6)
H10A1.26820.81070.90680.063*
N110.7967 (2)1.0899 (2)0.78359 (10)0.0405 (5)
N120.7343 (3)1.2000 (3)0.87473 (12)0.0579 (7)
H120.74041.23050.91400.069*
Ni10.91924 (3)0.96550 (3)0.711416 (15)0.03369 (11)
O10.5032 (2)0.6882 (2)0.53592 (10)0.0561 (5)
O20.7362 (3)0.6167 (3)0.50974 (13)0.0884 (8)
O30.2792 (2)0.7082 (2)0.99273 (10)0.0554 (5)
O40.3444 (3)0.5178 (2)1.06095 (10)0.0628 (6)
C40.4398 (14)0.5770 (17)0.7597 (8)0.089 (3)0.774 (12)
H40.43520.62520.79850.107*0.774 (12)
S10.3174 (3)0.4661 (3)0.73853 (14)0.0805 (17)0.774 (12)
C70.3090 (15)0.1157 (12)1.0081 (8)0.067 (3)0.753 (5)
H70.36700.03181.02260.080*0.753 (5)
S20.1132 (3)0.1476 (2)0.99890 (12)0.0834 (8)0.753 (5)
S1'0.3871 (14)0.5542 (15)0.7623 (6)0.124 (12)0.226 (12)
C4'0.324 (3)0.429 (3)0.7164 (11)0.060 (8)0.226 (12)
H4'0.24840.37780.72670.072*0.226 (12)
C7'0.098 (3)0.1816 (18)0.9903 (14)0.16 (2)0.247 (5)
H7'0.01320.14260.99240.193*0.247 (5)
S2'0.2812 (15)0.0985 (12)1.0115 (8)0.091 (4)0.247 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (2)0.055 (2)0.069 (2)0.0105 (16)0.0164 (18)0.0026 (16)
C20.0470 (16)0.0488 (17)0.0432 (15)0.0005 (13)0.0061 (12)0.0146 (13)
C30.085 (3)0.063 (2)0.059 (2)0.0222 (18)0.0127 (19)0.0047 (17)
C50.065 (2)0.065 (2)0.068 (2)0.0153 (17)0.0114 (17)0.0182 (18)
C60.0476 (16)0.0587 (18)0.0361 (14)0.0126 (14)0.0016 (12)0.0004 (13)
C80.063 (2)0.059 (2)0.0593 (19)0.0130 (16)0.0103 (15)0.0139 (16)
C90.0613 (19)0.0543 (18)0.0395 (15)0.0195 (15)0.0042 (13)0.0138 (13)
C100.066 (2)0.071 (2)0.072 (2)0.0202 (19)0.0022 (18)0.0153 (19)
C110.077 (2)0.0567 (19)0.0371 (15)0.0195 (16)0.0023 (14)0.0053 (13)
C120.0457 (15)0.0502 (17)0.0345 (14)0.0154 (12)0.0054 (11)0.0035 (12)
C130.0444 (15)0.0462 (16)0.0408 (15)0.0085 (12)0.0051 (12)0.0078 (12)
C140.0580 (19)0.069 (2)0.074 (2)0.0256 (17)0.0246 (17)0.0182 (18)
C150.061 (2)0.062 (2)0.070 (2)0.0281 (16)0.0207 (16)0.0278 (17)
C160.0685 (19)0.0358 (15)0.0474 (16)0.0021 (13)0.0075 (14)0.0018 (13)
C170.090 (2)0.0334 (16)0.0547 (18)0.0088 (15)0.0014 (17)0.0036 (14)
C180.0506 (16)0.0429 (16)0.0381 (14)0.0062 (12)0.0021 (12)0.0033 (12)
C190.0461 (16)0.0480 (16)0.0391 (14)0.0020 (12)0.0026 (12)0.0020 (12)
N60.0540 (15)0.0539 (15)0.0418 (13)0.0140 (12)0.0104 (11)0.0011 (11)
C210.0533 (17)0.0492 (17)0.0400 (15)0.0046 (13)0.0008 (13)0.0071 (13)
C220.0545 (17)0.0491 (17)0.0415 (15)0.0043 (13)0.0022 (13)0.0113 (13)
C230.072 (2)0.081 (3)0.057 (2)0.0263 (19)0.0033 (18)0.0153 (18)
C240.0593 (19)0.069 (2)0.0482 (17)0.0155 (16)0.0044 (14)0.0168 (15)
C250.0505 (16)0.0413 (16)0.0462 (16)0.0102 (12)0.0024 (13)0.0024 (12)
C260.075 (2)0.0413 (18)0.074 (2)0.0226 (16)0.0059 (18)0.0003 (16)
C270.066 (2)0.0464 (18)0.0539 (18)0.0133 (15)0.0080 (15)0.0028 (14)
C280.0494 (16)0.0452 (16)0.0384 (14)0.0024 (12)0.0073 (12)0.0010 (12)
C290.063 (2)0.097 (3)0.056 (2)0.032 (2)0.0206 (16)0.0054 (19)
C300.0579 (19)0.075 (2)0.0492 (17)0.0245 (17)0.0101 (14)0.0100 (16)
N10.0421 (12)0.0319 (11)0.0344 (11)0.0026 (9)0.0028 (9)0.0007 (9)
N20.0514 (14)0.0482 (14)0.0413 (12)0.0034 (11)0.0130 (11)0.0067 (11)
N30.0439 (12)0.0386 (12)0.0331 (11)0.0054 (9)0.0008 (9)0.0021 (9)
N40.0746 (17)0.0543 (16)0.0373 (12)0.0229 (13)0.0035 (12)0.0090 (11)
N50.0402 (12)0.0418 (13)0.0332 (11)0.0036 (9)0.0021 (9)0.0008 (9)
C200.076 (2)0.0509 (18)0.0393 (15)0.0030 (15)0.0036 (15)0.0110 (13)
N70.0437 (12)0.0353 (12)0.0372 (11)0.0081 (9)0.0018 (9)0.0016 (9)
N80.0532 (15)0.0600 (17)0.0530 (15)0.0209 (12)0.0030 (12)0.0104 (13)
N90.0428 (12)0.0468 (13)0.0348 (11)0.0055 (10)0.0040 (9)0.0005 (10)
N100.0574 (15)0.0593 (16)0.0387 (13)0.0028 (12)0.0140 (11)0.0014 (11)
N110.0475 (13)0.0378 (12)0.0344 (11)0.0039 (10)0.0026 (9)0.0011 (9)
N120.0740 (18)0.0554 (16)0.0435 (14)0.0027 (13)0.0027 (13)0.0164 (12)
Ni10.03781 (18)0.03297 (18)0.02871 (17)0.00365 (13)0.00005 (12)0.00110 (12)
O10.0570 (13)0.0541 (13)0.0480 (11)0.0056 (10)0.0028 (9)0.0148 (10)
O20.0612 (15)0.118 (2)0.0812 (17)0.0209 (14)0.0233 (13)0.0226 (16)
O30.0763 (14)0.0448 (12)0.0438 (11)0.0058 (10)0.0097 (10)0.0023 (9)
O40.1051 (18)0.0539 (13)0.0348 (11)0.0320 (12)0.0040 (11)0.0037 (9)
C40.099 (5)0.095 (5)0.071 (5)0.018 (4)0.002 (4)0.001 (4)
S10.0613 (11)0.093 (3)0.077 (2)0.0054 (11)0.0176 (11)0.024 (2)
C70.069 (4)0.065 (6)0.068 (5)0.020 (4)0.014 (3)0.008 (4)
S20.0988 (18)0.0813 (11)0.0849 (12)0.0531 (10)0.0155 (10)0.0206 (9)
S1'0.18 (2)0.109 (13)0.056 (4)0.037 (15)0.015 (7)0.012 (5)
C4'0.069 (15)0.063 (16)0.054 (16)0.033 (13)0.005 (11)0.008 (10)
C7'0.08 (2)0.25 (5)0.12 (2)0.03 (2)0.046 (17)0.05 (2)
S2'0.141 (11)0.072 (4)0.073 (4)0.055 (5)0.026 (5)0.017 (3)
Geometric parameters (Å, º) top
C1—C4'1.299 (15)N6—H60.8600
C1—C21.357 (4)C21—C201.336 (4)
C1—S11.721 (4)C21—N51.386 (3)
C1—H10.9300C21—H210.9300
C2—C31.395 (4)C22—N111.312 (3)
C2—C51.495 (4)C22—N121.330 (4)
C3—C41.307 (12)C22—H220.9300
C3—S1'1.735 (9)C23—N121.339 (4)
C3—H30.9300C23—C241.347 (4)
C5—C61.516 (4)C23—H230.9300
C5—H5A0.9700C24—N111.368 (4)
C5—H5B0.9700C24—H240.9300
C6—O21.235 (3)C25—N71.318 (3)
C6—O11.245 (3)C25—N81.323 (4)
C8—C71.356 (12)C25—H250.9300
C8—C91.401 (4)C26—C271.355 (4)
C8—S2'1.651 (10)C26—N81.357 (4)
C8—H80.9300C26—H260.9300
C9—C101.377 (5)C27—N71.372 (4)
C9—C111.498 (4)C27—H270.9300
C10—C7'1.350 (15)C28—N91.320 (3)
C10—S21.677 (4)C28—N101.327 (3)
C10—H100.9300C28—H280.9300
C11—C121.522 (4)C29—C301.353 (4)
C11—H11A0.9700C29—N101.364 (4)
C11—H11B0.9700C29—H290.9300
C12—O41.243 (3)C30—N91.377 (4)
C12—O31.265 (3)C30—H300.9300
C13—N11.315 (3)N1—Ni12.127 (2)
C13—N21.334 (3)N2—H20.8600
C13—H130.9300N3—Ni12.130 (2)
C14—N21.338 (4)N4—H4A0.8600
C14—C151.344 (4)N5—Ni12.103 (2)
C14—H140.9300C20—H200.9300
C15—N11.360 (4)N7—Ni12.125 (2)
C15—H150.9300N8—H8A0.8600
C16—C171.342 (4)N9—Ni12.149 (2)
C16—N31.384 (3)N10—H10A0.8600
C16—H160.9300N11—Ni12.133 (2)
C17—N41.340 (4)N12—H120.8600
C17—H170.9300C4—S11.783 (13)
C18—N31.318 (3)C4—H40.9300
C18—N41.339 (3)C7—S21.796 (12)
C18—H180.9300C7—H70.9300
C19—N51.319 (3)S1'—C4'1.782 (14)
C19—N61.335 (3)C4'—H4'0.9300
C19—H190.9300C7'—S2'1.792 (14)
N6—C201.351 (4)C7'—H7'0.9300
C4'—C1—C2126.7 (11)C27—C26—N8106.2 (3)
C2—C1—S1111.0 (3)C27—C26—H26126.9
C4'—C1—H1108.8N8—C26—H26126.9
C2—C1—H1124.5C26—C27—N7109.7 (3)
S1—C1—H1124.5C26—C27—H27125.2
C1—C2—C3111.1 (3)N7—C27—H27125.2
C1—C2—C5123.2 (3)N9—C28—N10112.4 (3)
C3—C2—C5125.7 (3)N9—C28—H28123.8
C4—C3—C2119.1 (7)N10—C28—H28123.8
C2—C3—S1'105.0 (6)C30—C29—N10106.4 (3)
C4—C3—H3120.4C30—C29—H29126.8
C2—C3—H3120.4N10—C29—H29126.8
S1'—C3—H3134.6C29—C30—N9109.6 (3)
C2—C5—C6117.1 (3)C29—C30—H30125.2
C2—C5—H5A108.0N9—C30—H30125.2
C6—C5—H5A108.0C13—N1—C15104.1 (2)
C2—C5—H5B108.0C13—N1—Ni1126.26 (18)
C6—C5—H5B108.0C15—N1—Ni1129.40 (18)
H5A—C5—H5B107.3C13—N2—C14106.7 (2)
O2—C6—O1126.1 (3)C13—N2—H2126.7
O2—C6—C5115.1 (3)C14—N2—H2126.7
O1—C6—C5118.7 (3)C18—N3—C16104.6 (2)
C7—C8—C9116.7 (6)C18—N3—Ni1128.34 (18)
C9—C8—S2'110.8 (6)C16—N3—Ni1125.55 (18)
C7—C8—H8121.6C18—N4—C17107.4 (2)
C9—C8—H8121.6C18—N4—H4A126.3
S2'—C8—H8127.5C17—N4—H4A126.3
C10—C9—C8110.9 (3)C19—N5—C21104.2 (2)
C10—C9—C11124.2 (3)C19—N5—Ni1126.72 (18)
C8—C9—C11124.9 (3)C21—N5—Ni1129.02 (18)
C7'—C10—C9119.1 (12)C21—C20—N6107.1 (3)
C9—C10—S2113.1 (3)C21—C20—H20126.5
C7'—C10—H10117.4N6—C20—H20126.5
C9—C10—H10123.4C25—N7—C27104.4 (2)
S2—C10—H10123.4C25—N7—Ni1128.32 (19)
C9—C11—C12114.9 (2)C27—N7—Ni1127.25 (19)
C9—C11—H11A108.6C25—N8—C26107.2 (2)
C12—C11—H11A108.6C25—N8—H8A126.4
C9—C11—H11B108.6C26—N8—H8A126.4
C12—C11—H11B108.6C28—N9—C30104.6 (2)
H11A—C11—H11B107.5C28—N9—Ni1125.81 (19)
O4—C12—O3123.2 (3)C30—N9—Ni1128.84 (19)
O4—C12—C11119.3 (3)C28—N10—C29107.0 (2)
O3—C12—C11117.4 (2)C28—N10—H10A126.5
N1—C13—N2112.3 (2)C29—N10—H10A126.5
N1—C13—H13123.9C22—N11—C24104.6 (2)
N2—C13—H13123.9C22—N11—Ni1128.08 (19)
N2—C14—C15106.8 (3)C24—N11—Ni1127.36 (18)
N2—C14—H14126.6C22—N12—C23107.2 (3)
C15—C14—H14126.6C22—N12—H12126.4
C14—C15—N1110.2 (3)C23—N12—H12126.4
C14—C15—H15124.9N5—Ni1—N789.81 (8)
N1—C15—H15124.9N5—Ni1—N190.40 (8)
C17—C16—N3109.3 (3)N7—Ni1—N189.69 (8)
C17—C16—H16125.4N5—Ni1—N389.52 (8)
N3—C16—H16125.4N7—Ni1—N3177.57 (8)
N4—C17—C16107.3 (3)N1—Ni1—N392.65 (8)
N4—C17—H17126.4N5—Ni1—N11179.43 (8)
C16—C17—H17126.4N7—Ni1—N1190.73 (8)
N3—C18—N4111.5 (3)N1—Ni1—N1189.78 (8)
N3—C18—H18124.3N3—Ni1—N1189.93 (8)
N4—C18—H18124.3N5—Ni1—N990.79 (8)
N5—C19—N6111.9 (3)N7—Ni1—N989.38 (8)
N5—C19—H19124.0N1—Ni1—N9178.48 (8)
N6—C19—H19124.0N3—Ni1—N988.30 (8)
C19—N6—C20107.1 (2)N11—Ni1—N989.04 (8)
C19—N6—H6126.5C3—C4—S1106.7 (10)
C20—N6—H6126.5C3—C4—H4126.7
C20—C21—N5109.6 (3)S1—C4—H4126.7
C20—C21—H21125.2C1—S1—C492.1 (5)
N5—C21—H21125.2C8—C7—S2107.0 (8)
N11—C22—N12112.0 (3)C8—C7—H7126.5
N11—C22—H22124.0S2—C7—H7126.5
N12—C22—H22124.0C10—S2—C792.2 (4)
N12—C23—C24106.7 (3)C3—S1'—C4'97.7 (11)
N12—C23—H23126.6C1—C4'—S1'99.2 (15)
C24—C23—H23126.6C1—C4'—H4'130.4
C23—C24—N11109.5 (3)S1'—C4'—H4'130.4
C23—C24—H24125.2C10—C7'—S2'104.2 (16)
N11—C24—H24125.2C10—C7'—H7'127.9
N7—C25—N8112.5 (3)S2'—C7'—H7'127.9
N7—C25—H25123.7C8—S2'—C7'94.9 (11)
N8—C25—H25123.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O4i0.862.563.124 (3)124
N12—H12···O3i0.861.972.826 (3)170
N10—H10A···O3ii0.861.882.718 (3)164
N8—H8A···O2iii0.861.812.660 (3)170
N4—H4A···O4iv0.861.892.688 (3)153
N2—H2···O1v0.861.912.749 (3)166
N6—H6···O1ii0.861.902.711 (3)156
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)6](C6H5O2S)2
Mr749.52
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.2483 (3), 9.8529 (3), 19.6365 (6)
α, β, γ (°)84.696 (1), 88.380 (2), 80.157 (2)
V3)1755.30 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.16 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.869, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
13333, 7140, 5337
Rint0.025
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06
No. of reflections7140
No. of parameters480
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O4i0.862.563.124 (3)124.2
N12—H12···O3i0.861.972.826 (3)170.1
N10—H10A···O3ii0.861.882.718 (3)164.0
N8—H8A···O2iii0.861.812.660 (3)169.5
N4—H4A···O4iv0.861.892.688 (3)153.3
N2—H2···O1v0.861.912.749 (3)165.9
N6—H6···O1ii0.861.902.711 (3)156.0
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNg, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds