organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

N-(2-Chloro-4-nitro­phen­yl)-2-nitro­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 17 January 2008; accepted 7 March 2008; online 12 March 2008)

In the title compound, C13H8ClN3O5, the dihedral angle between the two aromatic rings is 70.74 (6)°. The nitro groups of the Cl-substituted and benzamide benzene rings are twisted by 2.6 (1) and 31.3 (2)°, respectively. The crystal packing shows inter­molecular C—H⋯O hydrogen bonds that link mol­ecules into sheets stacked along [010].

Related literature

For the biological activities of benzanilides and related compounds, see: Makino et al. (2003[Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389-392.]); Ho et al. (2002[Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501-1506.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]); Jackson et al. (1994[Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220-3230.]); Capdeville et al. (2002[Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug. Discov. 1, 493-502.]); Igawa et al. (1999[Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.]). For related structures, see: Di Rienzo et al. (1980[Di Rienzo, F., Domenicano, A. & Riva di Sanseverino, L. (1980). Acta Cryst. B36, 586-591.]); Batsanov & Lyubchik (2003[Batsanov, A. S. & Lyubchik, S. B. (2003). Acta Cryst. E59, o155-o157.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8ClN3O5

  • Mr = 321.67

  • Orthorhombic, P b c a

  • a = 7.8053 (9) Å

  • b = 13.8621 (17) Å

  • c = 24.101 (3) Å

  • V = 2607.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 (2) K

  • 0.47 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 0.956

  • 21562 measured reflections

  • 3111 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.04

  • 3111 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1 0.95 2.24 2.848 (2) 121
C10—H10A⋯O4i 0.95 2.35 3.246 (2) 157
C11—H11A⋯O2ii 0.95 2.55 3.202 (2) 126
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 2002), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic, have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville et al., 2002).Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999) The literature is full of the function of the 2-chloro-4-nitrophenyl group (CNP) and also structures of nitrobenzamide (NB) and related compounds (Di Rienzo et al., 1980; Batsanov & Lyubchik, 2003). The aim of the present work was to combine CNP and NB in a single structure which is not well known in the literature.

Geometric parameters of the title compound, C13H8ClN3O5, are in the usual ranges. The dihedral angle between the two aromatic rings is 70.74 (6)°. The N2 nitro group is twisted by 31.3 (2)° from the plane of the C2–C7 phenyl ring, and the N3 group 2.6 (2)° from the C8–C13 plane, respectively. The crystal packing shows intermolecular C–H···O hydrogen bonds, from the Cl-phenyl group to both nitro groups. Details are depicted in Table 1. By these hydrogen bonds molecules are linked to endless sheets that are stacked along [010]. Additionally, stacking of molecules along [100] can be recognized. The intramolecular C13–H13A···O1 interaction is a common feature for this molecule with an almost planar O1–C1–N1–C8–C13 arrangement. The corresponding torsion angles are C8–N1–C1–O1 6.7 (3)° and C1–N1–C8–C13 - 7.6 (3)°, respectively.

Related literature top

For the biological activities of benzanilides and related compounds, see: Makino et al. (2003); Ho et al. (2002); Zhichkin et al. (2007); Jackson et al. (1994); Capdeville et al. (2002); Igawa et al. (1999). For related structures, see: Di Rienzo et al. (1980); Batsanov & Lyubchik (2003).

Experimental top

2-Nitrobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-chloro-4-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: IR (KBr) 3226, 1665, 1616, 1520, 1352 cm-1; 1H NMR (CDCl3, 400 MHz) ? 8.13 (d, J) 8 Hz, 1H), 7.81 (d, J) 8 Hz, 1H), 7.51 (dd, J) 8 Hz, 1H), 7.66 (dd, J) 8 Hz, 1H), 7.43 (d, J) 8 Hz, 2H), 7.36 (br s, 1H), 7.25 (d, J) 8 Hz, 1H); 13 C NMR (100 MHz) ? 164.7, 147.8, 134.6, 134.4, 132.7, 132.1, 130.3, 129.9, 129.3, 125.0. Anal. Calcd. For C13H9N3O5, C, 48.54; H, 2.51; Cl, 11.02; N, 13.06 found C, 48.12; H, 2.31; Cl, 11.3; N, 12.94.

Refinement top

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
N-(2-Chloro-4-nitrophenyl)-2-nitrobenzamide top
Crystal data top
C13H8ClN3O5F(000) = 1312
Mr = 321.67Dx = 1.639 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 769 reflections
a = 7.8053 (9) Åθ = 2.9–25.7°
b = 13.8621 (17) ŵ = 0.32 mm1
c = 24.101 (3) ÅT = 120 K
V = 2607.7 (5) Å3Prism, colourless
Z = 80.47 × 0.20 × 0.14 mm
Data collection top
Bruker SMART APEX
diffractometer
3111 independent reflections
Radiation source: sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.863, Tmax = 0.956k = 1816
21562 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.7975P]
where P = (Fo2 + 2Fc2)/3
3111 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H8ClN3O5V = 2607.7 (5) Å3
Mr = 321.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8053 (9) ŵ = 0.32 mm1
b = 13.8621 (17) ÅT = 120 K
c = 24.101 (3) Å0.47 × 0.20 × 0.14 mm
Data collection top
Bruker SMART APEX
diffractometer
3111 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2424 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.956Rint = 0.053
21562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
3111 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.13944 (6)0.38512 (3)0.446787 (18)0.02271 (13)
O10.49413 (17)0.41462 (11)0.39481 (5)0.0317 (3)
O20.6129 (2)0.24007 (10)0.33719 (6)0.0374 (4)
O30.4575 (2)0.23191 (11)0.26277 (7)0.0428 (4)
O40.38629 (18)0.37084 (12)0.57016 (6)0.0388 (4)
O50.54709 (19)0.33143 (11)0.63925 (5)0.0345 (4)
N10.7841 (2)0.41233 (11)0.40825 (6)0.0221 (3)
H1A0.88160.42220.39080.027*
N20.5594 (2)0.27328 (11)0.29309 (7)0.0269 (4)
N30.5267 (2)0.35472 (11)0.59071 (6)0.0229 (3)
C10.6395 (2)0.41795 (13)0.37682 (7)0.0208 (4)
C20.6749 (2)0.43395 (13)0.31581 (7)0.0191 (4)
C30.7458 (2)0.52025 (13)0.29780 (7)0.0226 (4)
H3A0.77970.56750.32420.027*
C40.7676 (3)0.53806 (14)0.24147 (7)0.0253 (4)
H4A0.81790.59690.22960.030*
C50.7163 (3)0.47032 (14)0.20255 (7)0.0254 (4)
H5A0.73100.48310.16410.030*
C60.6437 (2)0.38416 (14)0.21950 (7)0.0237 (4)
H6A0.60730.33760.19310.028*
C70.6253 (2)0.36732 (13)0.27579 (7)0.0200 (4)
C80.7961 (2)0.39263 (12)0.46521 (7)0.0190 (4)
C90.9581 (2)0.37737 (12)0.48863 (7)0.0196 (4)
C100.9792 (2)0.35510 (13)0.54414 (7)0.0216 (4)
H10A1.09070.34430.55870.026*
C110.8378 (2)0.34852 (13)0.57846 (7)0.0211 (4)
H11A0.84970.33380.61680.025*
C120.6785 (2)0.36410 (12)0.55510 (7)0.0192 (4)
C130.6534 (2)0.38633 (12)0.49987 (7)0.0194 (4)
H13A0.54140.39710.48580.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0156 (2)0.0279 (2)0.0246 (2)0.00115 (17)0.00315 (15)0.00015 (17)
O10.0189 (7)0.0559 (10)0.0203 (6)0.0026 (7)0.0019 (5)0.0048 (6)
O20.0461 (10)0.0290 (8)0.0371 (8)0.0004 (7)0.0064 (7)0.0124 (6)
O30.0422 (10)0.0316 (8)0.0545 (10)0.0107 (7)0.0013 (8)0.0119 (7)
O40.0163 (7)0.0739 (12)0.0262 (7)0.0008 (7)0.0005 (6)0.0062 (7)
O50.0305 (8)0.0551 (10)0.0178 (6)0.0020 (7)0.0025 (5)0.0071 (6)
N10.0153 (8)0.0339 (9)0.0172 (7)0.0003 (7)0.0018 (6)0.0034 (6)
N20.0255 (9)0.0226 (8)0.0325 (9)0.0008 (7)0.0081 (7)0.0029 (7)
N30.0203 (8)0.0300 (9)0.0182 (7)0.0007 (7)0.0008 (6)0.0010 (6)
C10.0205 (9)0.0234 (9)0.0186 (8)0.0022 (7)0.0016 (7)0.0004 (7)
C20.0138 (9)0.0243 (9)0.0191 (8)0.0035 (7)0.0011 (6)0.0020 (7)
C30.0195 (10)0.0239 (9)0.0245 (9)0.0002 (8)0.0013 (7)0.0004 (7)
C40.0238 (10)0.0243 (9)0.0278 (9)0.0030 (8)0.0062 (8)0.0069 (8)
C50.0252 (10)0.0331 (11)0.0178 (8)0.0079 (8)0.0043 (7)0.0052 (8)
C60.0237 (10)0.0276 (10)0.0197 (8)0.0048 (8)0.0005 (7)0.0048 (7)
C70.0162 (9)0.0212 (9)0.0226 (9)0.0026 (7)0.0028 (7)0.0002 (7)
C80.0182 (9)0.0197 (9)0.0191 (8)0.0001 (7)0.0012 (7)0.0003 (7)
C90.0162 (9)0.0172 (9)0.0254 (9)0.0003 (7)0.0029 (7)0.0016 (7)
C100.0164 (9)0.0249 (10)0.0236 (9)0.0019 (7)0.0038 (7)0.0003 (7)
C110.0217 (9)0.0230 (9)0.0187 (8)0.0008 (8)0.0030 (7)0.0015 (7)
C120.0196 (9)0.0186 (8)0.0192 (8)0.0008 (7)0.0018 (7)0.0015 (7)
C130.0153 (9)0.0238 (9)0.0191 (8)0.0009 (7)0.0012 (6)0.0010 (7)
Geometric parameters (Å, º) top
Cl1—C91.7411 (18)C4—C51.386 (3)
O1—C11.216 (2)C4—H4A0.9500
O2—N21.231 (2)C5—C61.383 (3)
O3—N21.223 (2)C5—H5A0.9500
O4—N31.223 (2)C6—C71.384 (2)
O5—N31.2240 (19)C6—H6A0.9500
N1—C11.362 (2)C8—C131.395 (2)
N1—C81.403 (2)C8—C91.401 (2)
N1—H1A0.8800C9—C101.383 (2)
N2—C71.462 (2)C10—C111.383 (3)
N3—C121.469 (2)C10—H10A0.9500
C1—C21.512 (2)C11—C121.381 (3)
C2—C31.388 (3)C11—H11A0.9500
C2—C71.391 (3)C12—C131.380 (2)
C3—C41.390 (2)C13—H13A0.9500
C3—H3A0.9500
C1—N1—C8127.64 (15)C5—C6—C7118.53 (17)
C1—N1—H1A116.2C5—C6—H6A120.7
C8—N1—H1A116.2C7—C6—H6A120.7
O3—N2—O2124.13 (17)C6—C7—C2122.60 (17)
O3—N2—C7118.45 (16)C6—C7—N2117.81 (16)
O2—N2—C7117.41 (16)C2—C7—N2119.51 (16)
O4—N3—O5123.50 (16)C13—C8—C9118.04 (16)
O4—N3—C12118.03 (14)C13—C8—N1123.03 (16)
O5—N3—C12118.46 (15)C9—C8—N1118.92 (16)
O1—C1—N1124.98 (16)C10—C9—C8122.07 (16)
O1—C1—C2121.51 (16)C10—C9—Cl1118.51 (14)
N1—C1—C2113.45 (15)C8—C9—Cl1119.41 (13)
C3—C2—C7117.83 (16)C11—C10—C9119.91 (17)
C3—C2—C1120.22 (16)C11—C10—H10A120.0
C7—C2—C1121.73 (16)C9—C10—H10A120.0
C2—C3—C4120.48 (17)C12—C11—C10117.65 (16)
C2—C3—H3A119.8C12—C11—H11A121.2
C4—C3—H3A119.8C10—C11—H11A121.2
C5—C4—C3120.34 (17)C13—C12—C11123.77 (17)
C5—C4—H4A119.8C13—C12—N3117.93 (16)
C3—C4—H4A119.8C11—C12—N3118.28 (15)
C6—C5—C4120.21 (16)C12—C13—C8118.55 (17)
C6—C5—H5A119.9C12—C13—H13A120.7
C4—C5—H5A119.9C8—C13—H13A120.7
C8—N1—C1—O16.7 (3)O2—N2—C7—C229.6 (2)
C8—N1—C1—C2176.12 (17)C1—N1—C8—C137.6 (3)
O1—C1—C2—C3110.1 (2)C1—N1—C8—C9171.65 (18)
N1—C1—C2—C367.2 (2)C13—C8—C9—C101.0 (3)
O1—C1—C2—C764.4 (3)N1—C8—C9—C10178.25 (16)
N1—C1—C2—C7118.28 (19)C13—C8—C9—Cl1179.73 (13)
C7—C2—C3—C40.8 (3)N1—C8—C9—Cl11.0 (2)
C1—C2—C3—C4175.50 (17)C8—C9—C10—C110.8 (3)
C2—C3—C4—C51.0 (3)Cl1—C9—C10—C11179.93 (14)
C3—C4—C5—C60.3 (3)C9—C10—C11—C120.5 (3)
C4—C5—C6—C70.5 (3)C10—C11—C12—C130.4 (3)
C5—C6—C7—C20.8 (3)C10—C11—C12—N3178.34 (16)
C5—C6—C7—N2175.84 (17)O4—N3—C12—C132.9 (2)
C3—C2—C7—C60.1 (3)O5—N3—C12—C13177.27 (17)
C1—C2—C7—C6174.54 (17)O4—N3—C12—C11178.28 (18)
C3—C2—C7—N2176.43 (16)O5—N3—C12—C111.6 (3)
C1—C2—C7—N28.9 (3)C11—C12—C13—C80.7 (3)
O3—N2—C7—C631.8 (2)N3—C12—C13—C8178.11 (15)
O2—N2—C7—C6147.07 (18)C9—C8—C13—C120.9 (2)
O3—N2—C7—C2151.52 (17)N1—C8—C13—C12178.32 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O10.952.242.848 (2)121
C10—H10A···O4i0.952.353.246 (2)157
C11—H11A···O2ii0.952.553.202 (2)126
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H8ClN3O5
Mr321.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)7.8053 (9), 13.8621 (17), 24.101 (3)
V3)2607.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.47 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.863, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
21562, 3111, 2424
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.04
No. of reflections3111
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O10.952.242.848 (2)121.3
C10—H10A···O4i0.952.353.246 (2)156.6
C11—H11A···O2ii0.952.553.202 (2)126.0
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-i-Azam University, Islamabad.

References

First citationBatsanov, A. S. & Lyubchik, S. B. (2003). Acta Cryst. E59, o155–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug. Discov. 1, 493–502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDi Rienzo, F., Domenicano, A. & Riva di Sanseverino, L. (1980). Acta Cryst. B36, 586–591.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHo, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.  CrossRef CAS Google Scholar
First citationIgawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.  Google Scholar
First citationJackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220–3230.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389–392.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds