organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-1-{8′-(tert-Butyl­di­phenyl­silyl­oxy­meth­yl)-1′,7′-dioxa­spiro­[5.5]undecan-2′-yl}uridine

aDepartment of Chemistry, Univerisity of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz

(Received 21 February 2008; accepted 10 March 2008; online 14 March 2008)

The crystal structure of the title compound, C30H38N2O5Si, has been investigated to establish the relative stereochemistry at the spiro ring junction and the two anomeric centres. Each of the O atoms in the tetra­hydro­pyran rings adopts an axial position on the neighbouring ring. This bis­-diaxial conformation is adopted, thus gaining maximum stablization from the anomeric effect. The silyl-protected hydroxy­methyl and uracil substituents adopt equatorial positions on their associated tetra­hydro­pyran rings, thereby minimizing unfavourable steric inter­actions. The dimeric (2′R*,6′R*,8′R*)- and (2′S*,6′S*,8′S*)-uridine units are connected to each other across crystallographic inversion centres via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Mead & Zemribo (1996[Mead, K. T. & Zemribo, R. (1996). Synlett, 11, 1063-1064.]); Brimble et al. (1998[Brimble, M. A., Fares, F. A. & Turner, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 677-684.], 2004[Brimble, M. A., Robinson, J. E., Choi, K. W. & Woodgate, P. D. (2004). Aust. J. Chem. 57, 665-668.]).

[Scheme 1]

Experimental

Crystal data
  • C30H38N2O5Si

  • Mr = 534.71

  • Monoclinic, P 21 /n

  • a = 14.7960 (2) Å

  • b = 12.5092 (2) Å

  • c = 15.0935 (1) Å

  • β = 99.420 (1)°

  • V = 2755.93 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.12 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.985

  • 15898 measured reflections

  • 5612 independent reflections

  • 4327 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.111

  • S = 1.09

  • 5612 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 2.03 2.873 (2) 166
Symmetry code: (i) -x, -y+2, -z.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title uridine was prepared as a part of study to elaborate 6,6-spiroacetal scaffolds to incorporate a nucleobase at the anomeric position, thus generating a collection of novel hybrid structures. Similar syntheses of 6,6-spiroacetal based molecules in the presence of a Lewis acid and persilylated nucleophile have been reported by Mead & Zemribo (1996) and Brimble et al. (1998, 2004).

Figure 1 depicts the structure and atom numbering of the title uridine. The spiroacetal ring system adopts a conformation in which each of the O atoms (O1' and O7') adjacent to the C6' spirocentre adopts an axial position on the neighbouring ring, thus gaining maximum stabilization from the anomeric effect. The silyl-protected hydroxymethyl and uracil substituents adopt equatorial positions on their associated tetrahydropyran rings in order to minimized unfavourable steric interactions.

Figure 2 depicts molecular packing of racemic uridine units. The dimeric (2'R*,6'R*,8'R*) and (2'S*,6'S*,8'S*)-uridine units are connected to each other by the crystallographic inversion centres via intermolecular N3–H3A···O4 hydrogen bonds (Table 1).

Related literature top

For related literature, see: Mead & Zemribo (1996); Brimble et al. (1998, 2004).

Experimental top

To a suspension of uracil (6.95 mg, 61.9 µmol) in hexamethyldisilazane (0.5 ml) under an atmosphere of argon was added ammonium sulfate (2 crystals) and the mixture was heated to reflux until the white solid dissolved. After 3 h, the mixture was concentrated in vacuo to a thick yellow oil. 8-(tert-Butyldiphenylsilyloxymethyl)-2-acetoxy-1,7-dioxaspiro[5.5] undecane (18.8 mg, 38.9 µmol) in CH2Cl2 (1.0 ml) was transferred to the yellow oil via cannula. Freshly prepared TMSOTf solution (95.4 µL, 66.8 µmol, 0.70 mol L-1 in CH2Cl2) was added dropwise. After 3 h, saturated NaHCO3 solution (2 ml) and CH2Cl2 (2 ml) were added and the mixture was stirred for 15 min. The aqueous phase was extracted with CH2Cl2 (3 x 4 ml). The combined organic extracts were dried over MgSO4 and concentrated in vacuo. Purification by flash chromatography using hexane–EtOAc (19:1 to 7:3) as eluent yielded the title compound (7.50 mg, 36%) as a pale-yellow powder. Recrystallization from hexane–CH2Cl2 afforded pale yellow needles.

HRMS (FAB): found MH+, 535.2633, C30H39N2O5Si requires 535.2628.

νmax (film)/cm-1: 3376 (N–H), 2919 (C–H), 1689 (C=O), 1668 (C=O), 1456, 1377, 1267 (C–O), 1103 (C–O), 982, 699.

δH (300 MHz; CDCl3): 1.07 (9 H, s, OSiPh2tBu), 1.31–1.38 (1 H, m, H9'A), 1.41–1.51 (3 H, m, H3'A, H5'A and H11'A), 1.56–1.76 (5 H, m, H4'A, H5'B, H9'B, H10'A and H11'B), 1.80–1.94 (2 H, m, H3'B and H10'B), 2.07–2.16 (1 H, m, H4'B), 3.63 (1 H, dd, JAB 10.4 and JH1''A,8' 4.5, H1''A), 3.72 (1 H, dd, JAB 10.4 and JH1''B,8' 5.3, H1''B), 3.82–3.89 (1 H, m, H8'), 5.73 (1 H, d, J5,6 8.2, H5), 5.94 (1 H, dd, J2'ax,3'ax 11.1 and J2'ax,3'eq 2.5, H2'ax), 7.33–7.42 (6 H, m, Ph), 7.46 (1 H, d, J6,5 8.2, H6), 7.70–7.76 (4 H, m, Ph), 8.17 (1 H, br s, NH).

δC (75 MHz; CDCl3): 17.9 (CH2, C4'), 18.0 (CH2, C10'), 19.3 (C, OSiPh2tBu), 26.5 (CH2, C9'), 26.8 (CH3, OSiPh2tBu), 30.3 (CH2, C3'), 34.7 (CH2, C5'), 34.8 (CH2, C11'), 67.0 (CH2, C1''), 70.7 (CH, C8'), 76.8 (CH, C2'), 99.1 (C, C6'), 102.1 (CH, C5), 127.6 (CH, Ph), 129.5 (CH, Ph), 129.5 (CH, Ph), 133.8 (C, Ph), 135.7 (CH, Ph), 135.7 (CH, Ph), 140.3 (CH, C6), 149.7 (C, C2), 162.8 (C, C4).

m/z (FAB): 535 (MH+, 3%), 477 (MtBu, 11), 457 (M – Ph, 3), 423 (C26H35O3Si, 19), 239 (SiPh2tBu, 8), 199 (35), 197 (35), 135 (100), 105 (32), 91 (73).

Refinement top

H atoms were placed in calculated positions and were refined using a riding model (C—H = 0.93 or 0.97 Å), with U iso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of (2'S*,6'S*,8'S*)-uridine with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of racemic uridine units. The dimeric units of opposite chirality, (2'R*,6R'*,8'R*)- and (2'S*,6'S*,8'S*)-uridines are connected to each other by intermolecular hydrogen bonds. Dashed lines represent hydrogen bonds. Most hydrogen atoms that are not involved in hydrogen bonding, have been omitted for clarity. The origin of the unit cell is labelled as O while cell axes are labelled as a (red), b (green) and c (blue), respectively. [Symmetry code: (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) 1/2 + x, 3/2 - y, 1/2 + z; (iv) -x + 1, -y + 1, -z + 1.]
(±)-1-{8'-(tert-Butyldiphenylsilyloxymethyl)-1',7'- dioxaspiro[5.5]undecan-2'-yl}uridine top
Crystal data top
C30H38N2O5SiDx = 1.289 Mg m3
Mr = 534.71Melting point: 482.4(9) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.7960 (2) ÅCell parameters from 5612 reflections
b = 12.5092 (2) Åθ = 1.8–26.4°
c = 15.0935 (1) ŵ = 0.13 mm1
β = 99.420 (1)°T = 293 K
V = 2755.93 (6) Å3Needle, pale yellow
Z = 40.32 × 0.26 × 0.12 mm
F(000) = 1144
Data collection top
Siemens SMART CCD
diffractometer
5612 independent reflections
Radiation source: fine-focus sealed tube4327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
area–detector ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1418
Tmin = 0.960, Tmax = 0.985k = 1512
15898 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0251P)2 + 2.8069P]
where P = (Fo2 + 2Fc2)/3
5612 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C30H38N2O5SiV = 2755.93 (6) Å3
Mr = 534.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7960 (2) ŵ = 0.13 mm1
b = 12.5092 (2) ÅT = 293 K
c = 15.0935 (1) Å0.32 × 0.26 × 0.12 mm
β = 99.420 (1)°
Data collection top
Siemens SMART CCD
diffractometer
5612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4327 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.044
15898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
5612 reflectionsΔρmin = 0.34 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si0.55794 (4)0.75101 (5)0.10014 (4)0.01617 (14)
O1'0.36047 (10)1.12404 (11)0.28260 (9)0.0173 (3)
O1''0.56790 (11)0.86029 (11)0.16209 (10)0.0199 (3)
O20.19564 (11)0.89649 (12)0.17326 (11)0.0253 (4)
O40.00327 (12)1.13783 (12)0.01545 (10)0.0267 (4)
N10.21693 (12)1.07393 (14)0.21025 (12)0.0179 (4)
N30.10473 (13)1.02092 (14)0.09140 (12)0.0205 (4)
H3A0.08070.97150.05550.025*
C1''0.53531 (16)0.87555 (17)0.24520 (14)0.0208 (5)
H1''A0.58340.85910.29510.025*
H1''B0.48370.82870.24840.025*
C20.17425 (15)0.98991 (17)0.15908 (14)0.0188 (5)
C2'0.28987 (15)1.04722 (17)0.28551 (14)0.0180 (4)
H2'A0.31360.97580.27580.022*
C3'0.25589 (15)1.04928 (18)0.37497 (14)0.0204 (5)
H3'A0.20810.99620.37520.025*
H3'B0.23041.11900.38440.025*
C4'0.33596 (15)1.02537 (18)0.44990 (14)0.0197 (5)
H4'A0.31621.03210.50790.024*
H4'B0.35720.95280.44400.024*
C40.06939 (16)1.12308 (18)0.07495 (14)0.0208 (5)
C50.11736 (15)1.20464 (18)0.13209 (14)0.0204 (5)
H5A0.09961.27580.12420.025*
C5'0.41357 (15)1.10398 (17)0.44375 (14)0.0195 (5)
H5'A0.39471.17520.45850.023*
H5'B0.46671.08440.48730.023*
C6'0.43971 (15)1.10504 (16)0.35013 (14)0.0174 (4)
C60.18739 (15)1.17817 (17)0.19652 (14)0.0199 (5)
H6A0.21691.23170.23310.024*
O7'0.47639 (10)1.00155 (11)0.33619 (9)0.0176 (3)
C70.57397 (15)0.63171 (16)0.17660 (13)0.0172 (4)
C80.50484 (15)0.55495 (17)0.17660 (14)0.0189 (5)
H8A0.45240.55910.13340.023*
C8'0.50635 (15)0.99104 (17)0.24987 (14)0.0185 (5)
H8'A0.45421.00450.20210.022*
C9'0.58166 (15)1.07096 (17)0.24148 (15)0.0216 (5)
H9'A0.60081.06340.18330.026*
H9'B0.63431.05730.28750.026*
C90.51259 (16)0.47299 (17)0.23927 (14)0.0210 (5)
H9A0.46570.42310.23740.025*
C100.58946 (16)0.46522 (18)0.30429 (15)0.0225 (5)
H10A0.59400.41100.34700.027*
C10'0.54654 (16)1.18395 (17)0.25179 (14)0.0212 (5)
H10'A0.49931.20080.20120.025*
H10'B0.59631.23460.25230.025*
C11'0.50739 (15)1.19351 (17)0.33940 (14)0.0193 (5)
H11'A0.55731.19130.38980.023*
H11'B0.47701.26210.34060.023*
C110.66025 (17)0.53891 (19)0.30570 (15)0.0253 (5)
H11A0.71280.53310.34860.030*
C120.65222 (16)0.62106 (18)0.24300 (15)0.0233 (5)
H12A0.69970.67020.24490.028*
C130.44029 (15)0.74260 (17)0.03190 (13)0.0186 (4)
C140.41471 (16)0.66001 (18)0.03071 (14)0.0231 (5)
H14A0.45750.60790.03860.028*
C150.32729 (17)0.65419 (19)0.08109 (15)0.0265 (5)
H15A0.31230.59980.12290.032*
C160.26269 (17)0.7308 (2)0.06812 (15)0.0286 (6)
H16A0.20400.72740.10140.034*
C170.28483 (16)0.8121 (2)0.00618 (16)0.0277 (5)
H17A0.24090.86230.00300.033*
C180.37312 (16)0.81829 (18)0.04222 (15)0.0232 (5)
H18A0.38800.87420.08260.028*
C190.63144 (17)0.87945 (18)0.02047 (15)0.0259 (5)
H19A0.67690.89150.05800.039*
H19B0.63500.93500.02380.039*
H19C0.57170.87980.05660.039*
C200.74439 (16)0.7706 (2)0.08381 (16)0.0269 (5)
H20A0.78960.78060.04560.040*
H20B0.75490.70370.11490.040*
H20C0.74860.82780.12670.040*
C220.64860 (15)0.77039 (17)0.02668 (14)0.0189 (5)
C230.64515 (17)0.68136 (18)0.04386 (15)0.0257 (5)
H23A0.69220.69320.07970.039*
H23B0.58630.68180.08180.039*
H23C0.65480.61340.01420.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si0.0173 (3)0.0145 (3)0.0176 (3)0.0002 (2)0.0056 (2)0.0012 (2)
O1'0.0150 (8)0.0180 (8)0.0192 (7)0.0014 (6)0.0034 (6)0.0004 (6)
O1''0.0240 (9)0.0181 (8)0.0197 (7)0.0022 (6)0.0095 (7)0.0046 (6)
O20.0260 (9)0.0176 (8)0.0308 (9)0.0007 (7)0.0003 (7)0.0006 (7)
O40.0294 (9)0.0247 (9)0.0235 (8)0.0001 (7)0.0029 (7)0.0028 (7)
O7'0.0206 (8)0.0159 (7)0.0179 (7)0.0016 (6)0.0075 (6)0.0022 (6)
N10.0160 (9)0.0184 (9)0.0194 (9)0.0006 (7)0.0028 (7)0.0002 (7)
N30.0227 (10)0.0192 (9)0.0193 (9)0.0011 (8)0.0027 (8)0.0020 (8)
C1''0.0256 (12)0.0199 (11)0.0183 (10)0.0031 (9)0.0076 (9)0.0003 (9)
C20.0177 (11)0.0215 (11)0.0185 (10)0.0007 (9)0.0066 (9)0.0003 (9)
C2'0.0186 (11)0.0159 (10)0.0198 (10)0.0005 (9)0.0038 (9)0.0011 (8)
C3'0.0187 (11)0.0202 (11)0.0237 (11)0.0013 (9)0.0076 (9)0.0020 (9)
C4'0.0206 (12)0.0216 (11)0.0181 (10)0.0015 (9)0.0069 (9)0.0004 (9)
C40.0217 (12)0.0226 (12)0.0190 (11)0.0001 (9)0.0062 (9)0.0052 (9)
C50.0223 (12)0.0174 (11)0.0226 (11)0.0021 (9)0.0068 (9)0.0039 (9)
C5'0.0217 (12)0.0193 (11)0.0185 (10)0.0024 (9)0.0058 (9)0.0021 (9)
C6'0.0172 (11)0.0162 (10)0.0187 (10)0.0017 (9)0.0031 (9)0.0016 (8)
C60.0208 (12)0.0169 (11)0.0231 (11)0.0017 (9)0.0070 (9)0.0006 (9)
C70.0197 (11)0.0166 (10)0.0166 (10)0.0010 (9)0.0068 (9)0.0025 (8)
C80.0159 (11)0.0200 (11)0.0213 (11)0.0006 (9)0.0049 (9)0.0013 (9)
C8'0.0223 (12)0.0183 (11)0.0161 (10)0.0016 (9)0.0062 (9)0.0016 (8)
C9'0.0205 (12)0.0216 (11)0.0243 (11)0.0017 (9)0.0084 (10)0.0028 (9)
C90.0207 (12)0.0185 (11)0.0255 (11)0.0028 (9)0.0086 (10)0.0009 (9)
C100.0297 (13)0.0174 (11)0.0212 (11)0.0009 (10)0.0068 (10)0.0024 (9)
C10'0.0224 (12)0.0192 (11)0.0226 (11)0.0058 (9)0.0057 (9)0.0012 (9)
C11'0.0188 (11)0.0176 (11)0.0220 (11)0.0016 (9)0.0047 (9)0.0021 (9)
C110.0246 (13)0.0271 (12)0.0228 (11)0.0010 (10)0.0006 (10)0.0015 (10)
C120.0248 (13)0.0211 (11)0.0243 (11)0.0040 (10)0.0048 (10)0.0010 (9)
C130.0197 (11)0.0191 (11)0.0176 (10)0.0015 (9)0.0046 (9)0.0028 (9)
C140.0244 (13)0.0227 (12)0.0235 (11)0.0017 (10)0.0073 (10)0.0022 (9)
C150.0304 (14)0.0299 (13)0.0188 (11)0.0105 (11)0.0032 (10)0.0003 (10)
C160.0213 (12)0.0390 (15)0.0237 (11)0.0044 (11)0.0017 (10)0.0105 (11)
C170.0215 (13)0.0299 (13)0.0311 (13)0.0053 (10)0.0030 (10)0.0044 (11)
C180.0259 (13)0.0207 (11)0.0235 (11)0.0020 (10)0.0052 (10)0.0021 (9)
C190.0322 (14)0.0227 (12)0.0254 (12)0.0005 (10)0.0122 (10)0.0013 (10)
C200.0210 (12)0.0334 (14)0.0275 (12)0.0019 (10)0.0077 (10)0.0027 (10)
C220.0186 (11)0.0192 (11)0.0203 (10)0.0003 (9)0.0074 (9)0.0001 (9)
C230.0292 (14)0.0229 (12)0.0282 (12)0.0009 (10)0.0139 (11)0.0030 (10)
Geometric parameters (Å, º) top
Si—O1''1.6491 (15)C8'—C9'1.518 (3)
Si—C131.875 (2)C8'—H8'A0.9800
Si—C71.878 (2)C9'—C10'1.523 (3)
Si—C221.891 (2)C9'—H9'A0.9700
O1'—C2'1.425 (2)C9'—H9'B0.9700
O1'—C6'1.442 (3)C9—C101.379 (3)
O1''—C1''1.428 (2)C9—H9A0.9300
O2—C21.220 (3)C10—C111.393 (3)
O4—C41.229 (3)C10—H10A0.9300
O7'—C6'1.433 (2)C10'—C11'1.533 (3)
O7'—C8'1.449 (2)C10'—H10'A0.9700
N1—C61.380 (3)C10'—H10'B0.9700
N1—C21.393 (3)C11'—H11'A0.9700
N1—C2'1.472 (3)C11'—H11'B0.9700
N3—C21.381 (3)C11—C121.389 (3)
N3—C41.388 (3)C11—H11A0.9300
N3—H3A0.8600C12—H12A0.9300
C1''—C8'1.512 (3)C13—C181.400 (3)
C1''—H1''A0.9700C13—C141.409 (3)
C1''—H1''B0.9700C14—C151.391 (3)
C2'—C3'1.516 (3)C14—H14A0.9300
C2'—H2'A0.9800C15—C161.390 (3)
C3'—C4'1.528 (3)C15—H15A0.9300
C3'—H3'A0.9700C16—C171.384 (3)
C3'—H3'B0.9700C16—H16A0.9300
C4'—C5'1.526 (3)C17—C181.391 (3)
C4'—H4'A0.9700C17—H17A0.9300
C4'—H4'B0.9700C18—H18A0.9300
C4—C51.445 (3)C19—C221.540 (3)
C5—C61.341 (3)C19—H19A0.9600
C5—H5A0.9300C19—H19B0.9600
C5'—C6'1.525 (3)C19—H19C0.9600
C5'—H5'A0.9700C20—C221.534 (3)
C5'—H5'B0.9700C20—H20A0.9600
C6'—C11'1.519 (3)C20—H20B0.9600
C6—H6A0.9300C20—H20C0.9600
C7—C81.403 (3)C22—C231.536 (3)
C7—C121.408 (3)C23—H23A0.9600
C8—C91.387 (3)C23—H23B0.9600
C8—H8A0.9300C23—H23C0.9600
O1''—Si—C13110.29 (9)C9'—C8'—H8'A109.0
O1''—Si—C7108.65 (8)C8'—C9'—C10'109.60 (18)
C13—Si—C7107.79 (10)C8'—C9'—H9'A109.8
O1''—Si—C22102.72 (9)C10'—C9'—H9'A109.8
C13—Si—C22111.66 (9)C8'—C9'—H9'B109.8
C7—Si—C22115.59 (10)C10'—C9'—H9'B109.8
C2'—O1'—C6'112.48 (15)H9'A—C9'—H9'B108.2
C1''—O1''—Si126.65 (13)C10—C9—C8120.3 (2)
C6'—O7'—C8'113.14 (15)C10—C9—H9A119.9
C6—N1—C2121.73 (18)C8—C9—H9A119.9
C6—N1—C2'120.30 (17)C9—C10—C11119.7 (2)
C2—N1—C2'117.74 (17)C9—C10—H10A120.2
C2—N3—C4127.16 (19)C11—C10—H10A120.2
C2—N3—H3A116.4C9'—C10'—C11'110.13 (18)
C4—N3—H3A116.4C9'—C10'—H10'A109.6
O1''—C1''—C8'107.92 (17)C11'—C10'—H10'A109.6
O1''—C1''—H1''A110.1C9'—C10'—H10'B109.6
C8'—C1''—H1''A110.1C11'—C10'—H10'B109.6
O1''—C1''—H1''B110.1H10'A—C10'—H10'B108.1
C8'—C1''—H1''B110.1C6'—C11'—C10'112.58 (17)
H1''A—C1''—H1''B108.4C6'—C11'—H11'A109.1
O2—C2—N3122.6 (2)C10'—C11'—H11'A109.1
O2—C2—N1123.0 (2)C6'—C11'—H11'B109.1
N3—C2—N1114.42 (19)C10'—C11'—H11'B109.1
O1'—C2'—N1105.77 (16)H11'A—C11'—H11'B107.8
O1'—C2'—C3'111.57 (17)C12—C11—C10119.9 (2)
N1—C2'—C3'112.05 (17)C12—C11—H11A120.0
O1'—C2'—H2'A109.1C10—C11—H11A120.0
N1—C2'—H2'A109.1C11—C12—C7121.6 (2)
C3'—C2'—H2'A109.1C11—C12—H12A119.2
C2'—C3'—C4'109.02 (18)C7—C12—H12A119.2
C2'—C3'—H3'A109.9C18—C13—C14116.9 (2)
C4'—C3'—H3'A109.9C18—C13—Si120.88 (17)
C2'—C3'—H3'B109.9C14—C13—Si122.19 (17)
C4'—C3'—H3'B109.9C15—C14—C13121.9 (2)
H3'A—C3'—H3'B108.3C15—C14—H14A119.0
C5'—C4'—C3'109.21 (17)C13—C14—H14A119.0
C5'—C4'—H4'A109.8C16—C15—C14119.1 (2)
C3'—C4'—H4'A109.8C16—C15—H15A120.5
C5'—C4'—H4'B109.8C14—C15—H15A120.5
C3'—C4'—H4'B109.8C17—C16—C15120.7 (2)
H4'A—C4'—H4'B108.3C17—C16—H16A119.7
O4—C4—N3120.0 (2)C15—C16—H16A119.7
O4—C4—C5125.8 (2)C16—C17—C18119.6 (2)
N3—C4—C5114.18 (19)C16—C17—H17A120.2
C6—C5—C4120.3 (2)C18—C17—H17A120.2
C6—C5—H5A119.9C17—C18—C13121.8 (2)
C4—C5—H5A119.9C17—C18—H18A119.1
C6'—C5'—C4'111.68 (17)C13—C18—H18A119.1
C6'—C5'—H5'A109.3C22—C19—H19A109.5
C4'—C5'—H5'A109.3C22—C19—H19B109.5
C6'—C5'—H5'B109.3H19A—C19—H19B109.5
C4'—C5'—H5'B109.3C22—C19—H19C109.5
H5'A—C5'—H5'B107.9H19A—C19—H19C109.5
O7'—C6'—O1'109.20 (16)H19B—C19—H19C109.5
O7'—C6'—C11'111.75 (17)C22—C20—H20A109.5
O1'—C6'—C11'106.17 (16)C22—C20—H20B109.5
O7'—C6'—C5'106.73 (16)H20A—C20—H20B109.5
O1'—C6'—C5'110.88 (17)C22—C20—H20C109.5
C11'—C6'—C5'112.14 (17)H20A—C20—H20C109.5
C5—C6—N1122.0 (2)H20B—C20—H20C109.5
C5—C6—H6A119.0C20—C22—C23108.30 (19)
N1—C6—H6A119.0C20—C22—C19108.97 (19)
C8—C7—C12116.7 (2)C23—C22—C19109.75 (18)
C8—C7—Si121.68 (17)C20—C22—Si110.46 (14)
C12—C7—Si121.27 (16)C23—C22—Si111.55 (15)
C9—C8—C7121.8 (2)C19—C22—Si107.78 (15)
C9—C8—H8A119.1C22—C23—H23A109.5
C7—C8—H8A119.1C22—C23—H23B109.5
O7'—C8'—C1''105.03 (16)H23A—C23—H23B109.5
O7'—C8'—C9'110.61 (17)C22—C23—H23C109.5
C1''—C8'—C9'114.08 (19)H23A—C23—H23C109.5
O7'—C8'—H8'A109.0H23B—C23—H23C109.5
C1''—C8'—H8'A109.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.032.873 (2)166
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC30H38N2O5Si
Mr534.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.7960 (2), 12.5092 (2), 15.0935 (1)
β (°) 99.420 (1)
V3)2755.93 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.32 × 0.26 × 0.12
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15898, 5612, 4327
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.111, 1.09
No. of reflections5612
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.0312.873 (2)166
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

The authors thank the New Zealand Tertiary Education Commission for the award of a Top Achiever Doctoral Scholarship (KWC).

References

First citationBrimble, M. A., Fares, F. A. & Turner, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 677–684.  Web of Science CSD CrossRef Google Scholar
First citationBrimble, M. A., Robinson, J. E., Choi, K. W. & Woodgate, P. D. (2004). Aust. J. Chem. 57, 665–668.  Web of Science CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMead, K. T. & Zemribo, R. (1996). Synlett, 11, 1063–1064.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds