organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­benzoyl­meth­yl)-2H-1,4-benzo­thia­zin-3(4H)-one

aCollege of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016, People's Republic of China, and bDepartment of Chemical Engineering, Shijiazhuang Vocational Technology Institute, Shijiazhuang 050081, People's Republic of China
*Correspondence e-mail: yuanli@mail.hebtu.edu.cn

(Received 28 February 2008; accepted 18 March 2008; online 29 March 2008)

The six-membered heterocyclic ring in the title compound, C16H12ClNO2S, exists in a conformation intermediate between twist-boat and chair. A one-dimensional chain structure is formed as a result of inter­molecular N—H⋯O and C—H⋯O hydrogen bonds via crystallographic inversion symmetry and translation along the a axis.

Related literature

For the synthesis and biological activities of related chalcones and 1,5-benzothia­zepines, see: Ansari et al. (2005[Ansari, F. L., Umbreen, S., Hussain, L., Makhmoor, T., Nawaz, S. A., Lodhi, M. A., Khan, S. N., Shaheen, F., Choudhary, M. I. & Atta, U. R. (2005). Chem. Biodivers., 2, 487-496.]); Pant et al. (2006[Pant, S., Chandra, H., Sharma, P. & Pant, U. C. (2006). Indian J. Chem. Sect. B, 45, 1525-1530.]). For microwave-assisted syntheses of related compounds, see: Dandia et al. (2002[Dandia, A., Sati, M. & Loupy, A. (2002). Green Chem. 4, 599-602.]). For further related literature, see: Pant & Chugh (1989[Pant, U. C. & Chugh, M. (1989). Indian J. Chem. Sect. B, 28, 435-436.]); Kirchner & Alexander (1959[Kirchner, F. K. & Alexander, E. J. (1959). J. Am. Chem. Soc. 81, 1721-1726.]); Beryozkina et al. (2004[Beryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). Phosphorus Sulfur Silicon, 179, 2153-2162.]); Pant et al. (1987[Pant, U. C., Gaur, B. S. & Chugh, M. (1987). Indian J. Chem. Sect. B, 26, 947-950.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClNO2S

  • Mr = 317.78

  • Triclinic, [P \overline 1]

  • a = 7.7273 (19) Å

  • b = 8.649 (2) Å

  • c = 12.298 (3) Å

  • α = 82.032 (3)°

  • β = 72.349 (2)°

  • γ = 68.829 (3)°

  • V = 730.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 273 (2) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.876, Tmax = 1.000 (expected range = 0.814–0.929)

  • 3962 measured reflections

  • 2545 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.06

  • 2545 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.8812 (19) 177
C7—H7⋯O2ii 0.98 2.54 3.443 (2) 152
C9—H9A⋯O1iii 0.97 2.59 3.485 (2) 153
C13—H13⋯O1iv 0.93 2.59 3.400 (2) 145
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 1997[Bruker (1997). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,5-Benzothiazepine and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals (Ansari et al., 2005; Pant et al., 2006). The reaction of 2-aminothiophenol with various α,β-unsaturated carbonyl compounds lead to the formation of 1,5-benzothiazepines. We have synthesized some 3-acetyl and 3-alkoxycarbonyl substituted 1,5-benzothiazepines, showing very good activity against fungus candida albicans by the reaction of 2-aminothiophenol with acetylacetone and ethyl acetoacetate. In continuation of our ongoing studies on the synthesis of 4-aryl-2-carboxy-2,3-dihydro-1,5-benzothiazepines for various biological activities, we reacted 2-aminothiophenol with β-aroylacrylic acids, but the formation of a seven-membered ring did not occur. Several authors have reported about the 4-aryl-2-carboxy-2,3-dihydro-1,5-benzothiazepine structure for the products of the reaction of 2-aminothiophenol with β-aroylacrylic acids (Pant & Chugh, 1989; Dandia et al., 2002), and others proposed the formation of 1,4-benzothiazin-3-ones (Kirchner & Alexander, 1959; Beryozkina et al., 2004).

So we repeated the experiment for several times and recrystallized the final product again. Upon X-ray diffraction analysis, along with the spectroscopic data we know that 1,4-benzothiazin-3-one was obtained as the only product (Fig. 1). In the crystalline state, the title compound form a one-dimensional chain structure due to intermolecular N—H···O and C—H···O hydrogen bonds via crystallographic inversion symmetry and translation along the a axis (Table 1). The substituent at atom C7 is equatorially oriented with a torsion angle O1–C8–C7–C9 = 8.3 (2)°. The carbonyl group is slightly turned relative to the chlorophenyl substituent with a torsion angle O2–C10–C11–C16 = 10.8 (2)°. The six-membered heterocycle in the title compound exists in intermediate conformation between twisted boat and chair type.

Related literature top

For the synthesis and biological activities of related chalcones and 1,5-benzothiazepines, see: Ansari et al. (2005); Pant et al. (2006). For microwave-assisted syntheses of related compounds, see: Dandia et al. (2002). For further related literature, see: Pant & Chugh (1989); Kirchner & Alexander (1959).

For related literature, see: Beryozkina et al. (2004); Pant et al. (1987).

Experimental top

4-(4-chlorophenyl)-4-oxo-2-butenoic acid was prepared by AlCl3 catalysed treatment of powdered meleic anhydride with chlorobenzene following the general literature procedure. (Pant et al., 1987). 2-Aminothiophenol (2 mmol) and 4-(4-chlorophenyl)-4-oxo-2-butenoic acid (2 mmol) were refluxed with dry ethanol saturated with hydrogen chloride gas. Excess of solvent was concentrated by distillation under reduced pressure and the residue crystallized from methanol to give the title compound as light yellow crystals suitable for X-ray structure determination. Analysis calculated for C16H12ClNO2S: C 60.47, H 3.81, N 4.41%; found: C 60.45, H 3.80, N 4.40%.

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (aryl C) and 0.97–0.98 Å (Csp3), and N—H distance of 0.86 Å, with all Uiso(H) = 1.2Ueq(Csp2).

Computing details top

Data collection: APEX2 (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
2-(4-Chlorobenzoylmethyl)-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C16H12ClNO2SZ = 2
Mr = 317.78F(000) = 328
Triclinic, P1Dx = 1.446 Mg m3
a = 7.7273 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.649 (2) ÅCell parameters from 2700 reflections
c = 12.298 (3) Åθ = 2.5–28.0°
α = 82.032 (3)°µ = 0.41 mm1
β = 72.349 (2)°T = 273 K
γ = 68.829 (3)°Labellar, colorless
V = 730.0 (3) Å30.24 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 99
Tmin = 0.876, Tmax = 1.000k = 108
3962 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.2045P]
where P = (Fo2 + 2Fc2)/3
2545 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H12ClNO2Sγ = 68.829 (3)°
Mr = 317.78V = 730.0 (3) Å3
Triclinic, P1Z = 2
a = 7.7273 (19) ÅMo Kα radiation
b = 8.649 (2) ŵ = 0.41 mm1
c = 12.298 (3) ÅT = 273 K
α = 82.032 (3)°0.24 × 0.20 × 0.18 mm
β = 72.349 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2236 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1.000Rint = 0.009
3962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2545 reflectionsΔρmin = 0.27 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60724 (7)0.61069 (8)0.87177 (5)0.0776 (2)
S10.31357 (6)0.84225 (6)0.23145 (3)0.04914 (15)
O10.30018 (15)0.92709 (13)0.52142 (9)0.0402 (3)
O20.28795 (16)0.57700 (15)0.57928 (11)0.0527 (3)
N10.54966 (17)0.90262 (15)0.36402 (11)0.0373 (3)
H10.59800.94980.39850.045*
C10.6460 (2)0.86774 (18)0.24884 (13)0.0363 (3)
C20.8326 (2)0.8708 (2)0.20508 (15)0.0474 (4)
H20.89530.88920.25320.057*
C30.9255 (3)0.8467 (2)0.09073 (16)0.0567 (5)
H31.05080.84880.06190.068*
C40.8333 (3)0.8197 (3)0.01912 (16)0.0632 (5)
H40.89590.80430.05820.076*
C50.6482 (3)0.8155 (3)0.06182 (15)0.0571 (5)
H50.58690.79630.01320.069*
C60.5527 (2)0.8397 (2)0.17663 (13)0.0418 (4)
C70.3290 (2)0.75703 (18)0.37328 (12)0.0344 (3)
H70.42740.64630.36660.041*
C80.3893 (2)0.87005 (17)0.42642 (12)0.0327 (3)
C90.1349 (2)0.74330 (18)0.44118 (12)0.0353 (3)
H9A0.04170.85400.45640.042*
H9B0.09180.69000.39520.042*
C100.1384 (2)0.64667 (18)0.55313 (13)0.0361 (3)
C110.0490 (2)0.63785 (17)0.63063 (13)0.0348 (3)
C120.2165 (2)0.68862 (19)0.59542 (14)0.0399 (4)
H120.21330.73010.52120.048*
C130.3878 (2)0.6784 (2)0.66903 (15)0.0448 (4)
H130.49920.71190.64480.054*
C140.3901 (2)0.6180 (2)0.77841 (15)0.0457 (4)
C150.2254 (3)0.5640 (2)0.81540 (15)0.0537 (4)
H150.22930.52190.88960.064*
C160.0555 (2)0.5732 (2)0.74112 (14)0.0467 (4)
H160.05630.53570.76520.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0481 (3)0.1072 (5)0.0628 (3)0.0307 (3)0.0052 (2)0.0103 (3)
S10.0396 (2)0.0791 (3)0.0395 (2)0.0307 (2)0.01448 (18)0.0016 (2)
O10.0368 (6)0.0468 (6)0.0402 (6)0.0183 (5)0.0069 (5)0.0085 (5)
O20.0335 (6)0.0611 (7)0.0604 (8)0.0122 (5)0.0183 (5)0.0097 (6)
N10.0339 (7)0.0453 (7)0.0402 (7)0.0202 (6)0.0103 (5)0.0062 (5)
C10.0336 (8)0.0368 (8)0.0399 (8)0.0150 (6)0.0090 (6)0.0000 (6)
C20.0380 (9)0.0573 (10)0.0510 (10)0.0223 (8)0.0117 (7)0.0011 (8)
C30.0409 (10)0.0716 (12)0.0548 (11)0.0273 (9)0.0001 (8)0.0001 (9)
C40.0591 (12)0.0848 (14)0.0433 (10)0.0350 (11)0.0042 (9)0.0065 (9)
C50.0593 (11)0.0816 (13)0.0404 (9)0.0376 (10)0.0095 (8)0.0051 (9)
C60.0378 (9)0.0499 (9)0.0403 (8)0.0205 (7)0.0080 (7)0.0003 (7)
C70.0299 (7)0.0368 (8)0.0389 (8)0.0132 (6)0.0095 (6)0.0036 (6)
C80.0284 (7)0.0329 (7)0.0381 (8)0.0099 (6)0.0121 (6)0.0000 (6)
C90.0298 (8)0.0371 (8)0.0427 (8)0.0144 (6)0.0107 (6)0.0032 (6)
C100.0326 (8)0.0345 (8)0.0436 (8)0.0118 (6)0.0120 (6)0.0040 (6)
C110.0341 (8)0.0318 (7)0.0404 (8)0.0122 (6)0.0110 (6)0.0025 (6)
C120.0373 (8)0.0420 (8)0.0427 (8)0.0169 (7)0.0141 (7)0.0078 (7)
C130.0346 (8)0.0471 (9)0.0542 (10)0.0166 (7)0.0147 (7)0.0070 (7)
C140.0375 (9)0.0491 (9)0.0457 (9)0.0161 (7)0.0025 (7)0.0021 (7)
C150.0521 (11)0.0704 (12)0.0363 (9)0.0216 (9)0.0106 (8)0.0047 (8)
C160.0418 (9)0.0573 (10)0.0431 (9)0.0155 (8)0.0170 (7)0.0002 (7)
Geometric parameters (Å, º) top
Cl1—C141.7394 (17)C7—C81.5135 (19)
S1—C61.7573 (16)C7—C91.5173 (19)
S1—C71.8182 (15)C7—H70.9800
O1—C81.2284 (18)C9—C101.511 (2)
O2—C101.2129 (18)C9—H9A0.9700
N1—C81.3489 (18)C9—H9B0.9700
N1—C11.403 (2)C10—C111.494 (2)
N1—H10.8600C11—C161.389 (2)
C1—C21.386 (2)C11—C121.390 (2)
C1—C61.394 (2)C12—C131.384 (2)
C2—C31.377 (2)C12—H120.9300
C2—H20.9300C13—C141.371 (2)
C3—C41.377 (3)C13—H130.9300
C3—H30.9300C14—C151.381 (3)
C4—C51.378 (3)C15—C161.376 (2)
C4—H40.9300C15—H150.9300
C5—C61.386 (2)C16—H160.9300
C5—H50.9300
C6—S1—C797.48 (7)O1—C8—C7122.41 (13)
C8—N1—C1126.91 (12)N1—C8—C7116.00 (12)
C8—N1—H1116.5C10—C9—C7113.70 (12)
C1—N1—H1116.5C10—C9—H9A108.8
C2—C1—C6119.70 (14)C7—C9—H9A108.8
C2—C1—N1119.38 (14)C10—C9—H9B108.8
C6—C1—N1120.82 (13)C7—C9—H9B108.8
C3—C2—C1120.31 (16)H9A—C9—H9B107.7
C3—C2—H2119.8O2—C10—C11120.79 (14)
C1—C2—H2119.8O2—C10—C9121.44 (14)
C4—C3—C2120.09 (16)C11—C10—C9117.77 (12)
C4—C3—H3120.0C16—C11—C12118.65 (14)
C2—C3—H3120.0C16—C11—C10118.96 (13)
C3—C4—C5120.09 (17)C12—C11—C10122.38 (14)
C3—C4—H4120.0C13—C12—C11121.08 (15)
C5—C4—H4120.0C13—C12—H12119.5
C4—C5—C6120.49 (17)C11—C12—H12119.5
C4—C5—H5119.8C14—C13—C12118.69 (15)
C6—C5—H5119.8C14—C13—H13120.7
C5—C6—C1119.31 (15)C12—C13—H13120.7
C5—C6—S1121.07 (13)C13—C14—C15121.61 (15)
C1—C6—S1119.58 (12)C13—C14—Cl1118.54 (13)
C8—C7—C9112.96 (12)C15—C14—Cl1119.85 (14)
C8—C7—S1107.61 (10)C16—C15—C14119.17 (16)
C9—C7—S1108.66 (10)C16—C15—H15120.4
C8—C7—H7109.2C14—C15—H15120.4
C9—C7—H7109.2C15—C16—C11120.77 (15)
S1—C7—H7109.2C15—C16—H16119.6
O1—C8—N1121.58 (13)C11—C16—H16119.6
C8—N1—C1—C2164.11 (15)C9—C7—C8—N1172.83 (12)
C8—N1—C1—C619.6 (2)S1—C7—C8—N152.90 (15)
C6—C1—C2—C30.2 (3)C8—C7—C9—C1070.81 (16)
N1—C1—C2—C3176.10 (16)S1—C7—C9—C10169.86 (10)
C1—C2—C3—C40.1 (3)C7—C9—C10—O25.5 (2)
C2—C3—C4—C50.5 (3)C7—C9—C10—C11175.14 (12)
C3—C4—C5—C60.5 (3)O2—C10—C11—C1610.8 (2)
C4—C5—C6—C10.2 (3)C9—C10—C11—C16169.83 (14)
C4—C5—C6—S1177.63 (15)O2—C10—C11—C12167.67 (15)
C2—C1—C6—C50.1 (2)C9—C10—C11—C1211.7 (2)
N1—C1—C6—C5176.12 (15)C16—C11—C12—C131.3 (2)
C2—C1—C6—S1178.03 (12)C10—C11—C12—C13179.77 (14)
N1—C1—C6—S11.8 (2)C11—C12—C13—C140.4 (2)
C7—S1—C6—C5148.48 (15)C12—C13—C14—C151.5 (3)
C7—S1—C6—C133.66 (14)C12—C13—C14—Cl1178.29 (12)
C6—S1—C7—C858.07 (11)C13—C14—C15—C160.9 (3)
C6—S1—C7—C9179.31 (10)Cl1—C14—C15—C16178.92 (14)
C1—N1—C8—O1169.12 (14)C14—C15—C16—C110.8 (3)
C1—N1—C8—C712.0 (2)C12—C11—C16—C151.9 (2)
C9—C7—C8—O18.3 (2)C10—C11—C16—C15179.53 (15)
S1—C7—C8—O1128.25 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.8812 (19)177
C7—H7···O2ii0.982.543.443 (2)152
C9—H9A···O1iii0.972.593.485 (2)153
C13—H13···O1iv0.932.593.400 (2)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H12ClNO2S
Mr317.78
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.7273 (19), 8.649 (2), 12.298 (3)
α, β, γ (°)82.032 (3), 72.349 (2), 68.829 (3)
V3)730.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.876, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3962, 2545, 2236
Rint0.009
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.06
No. of reflections2545
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.27

Computer programs: APEX2 (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.8812 (19)177
C7—H7···O2ii0.982.543.443 (2)152
C9—H9A···O1iii0.972.593.485 (2)153
C13—H13···O1iv0.932.593.400 (2)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1; (iv) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (No. B2007000239), People's Republic of China.

References

First citationAnsari, F. L., Umbreen, S., Hussain, L., Makhmoor, T., Nawaz, S. A., Lodhi, M. A., Khan, S. N., Shaheen, F., Choudhary, M. I. & Atta, U. R. (2005). Chem. Biodivers., 2, 487–496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). Phosphorus Sulfur Silicon, 179, 2153–2162.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandia, A., Sati, M. & Loupy, A. (2002). Green Chem. 4, 599–602.  Web of Science CrossRef CAS Google Scholar
First citationKirchner, F. K. & Alexander, E. J. (1959). J. Am. Chem. Soc. 81, 1721–1726.  CrossRef CAS Web of Science Google Scholar
First citationPant, S., Chandra, H., Sharma, P. & Pant, U. C. (2006). Indian J. Chem. Sect. B, 45, 1525–1530.  Google Scholar
First citationPant, U. C. & Chugh, M. (1989). Indian J. Chem. Sect. B, 28, 435–436.  Google Scholar
First citationPant, U. C., Gaur, B. S. & Chugh, M. (1987). Indian J. Chem. Sect. B, 26, 947–950.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds