metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­dicrotonato(di-2-pyridyl­amine)cobalt(II)

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, GuangXi, People's Republic of China
*Correspondence e-mail: wujian2007gx@126.com

(Received 14 March 2008; accepted 26 March 2008; online 29 March 2008)

The Co atom in the title complex, [Co(CH3CHCHCOO)2(C10H9N3)(H2O)], has a distorted recta­ngular–pyramidal geometry formed by the chelating dipyridylamine ligand, and two O atoms of monodentate carboxyl­ate groups of two different crotonate anions and a water molecule. The complex forms a three-dimensional supra­molecular network via inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding contacts.

Related literature

For related literature, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Chang et al. (1999[Chang, H.-C., Li, J.-T., Wang, C.-C., Lin, T.-W., Lee, H.-C., Lee, G.-H. & Peng, S.-M. (1999). Eur. J. Inorg. Chem. pp. 1243-1251.]); Peng et al. (2000[Peng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Magn. Mater. 209, 80-83.]); Wu (2007[Wu, J. (2007). Acta Cryst. E63, o4413.]); Xu et al. (2004[Xu, C., Qiao, H.-B., Mao, H.-Y., Zhang, H.-Y., Wu, Q.-A., Liu, H.-L. & Zhu, Y. (2004). J. Zheng Zhou Univ. 36, 67-70.]); Zhang (2007[Zhang, L. (2007). Acta Cryst. E63, m2950.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H5O2)2(C10H9N3)(H2O)]

  • Mr = 418.31

  • Monoclinic, P 21 /n

  • a = 7.1113 (7) Å

  • b = 16.8303 (15) Å

  • c = 15.9850 (14) Å

  • β = 91.291 (2)°

  • V = 1912.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 298 (2) K

  • 0.28 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.781, Tmax = 0.843

  • 9697 measured reflections

  • 3448 independent reflections

  • 2714 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 0.96

  • 3448 reflections

  • 252 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4 0.892 (15) 1.73 (3) 2.577 (4) 156 (6)
O5—H5B⋯O2i 0.888 (15) 1.86 (2) 2.729 (3) 166 (5)
N21—H21⋯O2ii 0.86 1.95 2.798 (3) 168
C8—H8⋯O4iii 0.93 2.47 3.356 (4) 160
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with polypyridylamine ligands, possessing diverse structures and special optical and electromagnetic properties (Peng et al., 2000), have aroused great interest among researchers. The pyridyldiamine ligand usually exhibits donor as well as acceptor properties and can be used as a popular chelating ligand (Chang et al., 1999; Xu et al., 2004).

As shown in the Scheme and Fig. 1, the Co atom in the title complex has a contorted rectangular pyramidal coordination geometry formed by the chelating dipyridine-2-ylamine (tpdaH2) ligand and two oxygen atoms of monodenate carboxylate groups of two different crotonic acid anions. The tpdaH2 ligand and the crotonic acid ligand consist of the basal plane. The coordinated water molecule hold the vertex location. The O1–Co1–N3 and O3–Co1–N1 angles are α = 156.63 (9)° and β = 175.67 (10)°, respectively. These angles were used to calculate a parameter τ, which is defined as τ = (β - α)/60 (Addison et al., 1984). In the case of a perfectly tetragonal symmetry, this value is equal to zero, and for a perfectly trigonal symmetry it is 1.0. In the presented structure this value is 0.317, indicating that the polyhedron is about 70% rectangular pyramidal. The dihedral angle between the pyridine ring planes is 12.74 (8)°, which is much larger than that of our reported similar organic ligand (6.10 (15)°) (Wu, 2007). The average bond lengths with Co–N is 2.01 Å, and the Co–O bond lengths range from 1.943 (2) to 2.215 (3) Å. The bond lengths with Co–N are shorter than those of a nickel complex with 2,3'-dipyridylamine (Zhang, 2007).

In the title complex the H atoms of two NH groups of tpdaH2 act as donors to form intermolecular classical hydrogen bonds with O2 as acceptor atoms. Synchronously, the coordinated water molecule takes as donor and binds to the uncoordinated oxygen atom O2 of one of the carboxylate groups, and to the intramolecular acceptor atom O4. A weak intermolecular C—H···O contact completes the three-dimensional supramolecular network (Table 1 and Fig. 2).

Related literature top

For related literature, see: Addison et al. (1984); Chang et al. (1999); Peng et al. (2000); Wu (2007); Xu et al. (2004); Zhang (2007).

Experimental top

CoSO4(0.022 g, 0.011 mmol), L(0.035 g, 0.023 mmol), tpdaH2 (0.028 mg, 0.013 mmol) and NaOH(0.048 mmol,0.12 mmol), were added in a mixed solvent of benzene and methanol, the mixture was heated for six hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel. Two weeks later some single crystals of the size suitable for X-ray diffraction analysis were obtained.

Refinement top

All H atoms (except the water H atoms) were placed in calculated positions [Csp2—H and N—H = 0.93 Å and 0.86 Å, respectively, and Csp3—H = 0.96 Å] and they were refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq for the CH3 groups. The methyl H atoms were allowed to rotate (AFIX 137) to optimal positions. The water H atoms were found in a difference electron density map, they were refined using distance restraints (O—H = 0.900(0.015) Å), with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atomic numbering scheme. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the title complex, showing O—H···O and C—H···O hydrogen bonds that contribute to the construction of a three-dimensional network, with hydrogen bonds shown as dashed lines.
Aquadicrotonato(di-2-pyridylamine)cobalt(II) top
Crystal data top
[Co(C4H5O2)2(C10H9N3)(H2O)]F(000) = 868
Mr = 418.31Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3448 reflections
a = 7.1113 (7) Åθ = 1.8–25.2°
b = 16.8303 (15) ŵ = 0.93 mm1
c = 15.9850 (14) ÅT = 298 K
β = 91.291 (2)°Block, green
V = 1912.7 (3) Å30.28 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3448 independent reflections
Radiation source: fine-focus sealed tube2714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 78
Tmin = 0.781, Tmax = 0.843k = 2020
9697 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0594P)2]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C4H5O2)2(C10H9N3)(H2O)]V = 1912.7 (3) Å3
Mr = 418.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1113 (7) ŵ = 0.93 mm1
b = 16.8303 (15) ÅT = 298 K
c = 15.9850 (14) Å0.28 × 0.22 × 0.19 mm
β = 91.291 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2714 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.843Rint = 0.064
9697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.34 e Å3
3448 reflectionsΔρmin = 0.36 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.19268 (5)0.572818 (19)0.66967 (2)0.04151 (15)
O10.0960 (3)0.68420 (11)0.66984 (13)0.0643 (6)
O20.1802 (3)0.62901 (12)0.64366 (13)0.0706 (6)
O30.0968 (4)0.56293 (13)0.78204 (14)0.0757 (7)
O40.3464 (4)0.59240 (16)0.86323 (16)0.0932 (8)
O50.4820 (4)0.6001 (3)0.71532 (17)0.1196 (12)
H5B0.600 (3)0.605 (3)0.699 (3)0.179*
H5A0.468 (9)0.598 (3)0.7706 (11)0.179*
N10.2756 (3)0.58881 (12)0.55228 (14)0.0464 (5)
N210.2027 (3)0.45990 (12)0.50412 (13)0.0478 (5)
H210.17780.43340.45930.057*
N30.1831 (3)0.45414 (14)0.65122 (14)0.0491 (6)
C10.3429 (4)0.66182 (15)0.53387 (18)0.0544 (7)
H10.35670.69830.57730.065*
C20.3914 (4)0.68510 (16)0.45638 (19)0.0584 (8)
H20.43760.73590.44680.070*
C30.3700 (4)0.63086 (17)0.39168 (19)0.0594 (8)
H30.39860.64550.33730.071*
C40.3073 (4)0.55626 (16)0.40755 (17)0.0521 (7)
H40.29430.51920.36470.062*
C50.2626 (4)0.53625 (15)0.48998 (16)0.0422 (6)
C60.1751 (4)0.41803 (14)0.57678 (18)0.0453 (6)
C70.1415 (4)0.33680 (15)0.5682 (2)0.0560 (7)
H70.13210.31410.51520.067*
C80.1226 (5)0.29138 (18)0.6368 (2)0.0701 (9)
H80.09900.23720.63190.084*
C90.1388 (5)0.32670 (19)0.7145 (2)0.0775 (10)
H90.13070.29650.76300.093*
C100.1669 (5)0.40655 (19)0.7188 (2)0.0683 (9)
H100.17540.42990.77160.082*
C110.0798 (5)0.68817 (17)0.65826 (18)0.0563 (7)
C120.1694 (5)0.7671 (2)0.6603 (2)0.0754 (10)
H120.29970.76830.66440.090*
C130.0862 (5)0.83305 (18)0.6571 (2)0.0721 (9)
H130.04440.83150.65540.087*
C140.1757 (7)0.91429 (18)0.6557 (3)0.0959 (13)
H14A0.12770.94500.70210.144*
H14B0.30960.90900.65980.144*
H14C0.14680.94070.60430.144*
C150.1754 (6)0.58252 (16)0.8511 (2)0.0631 (9)
C160.0514 (6)0.59332 (19)0.9235 (2)0.0745 (10)
H160.10900.60010.97580.089*
C170.1279 (6)0.59403 (19)0.9198 (2)0.0773 (10)
H170.18590.58720.86760.093*
C180.2546 (7)0.6052 (2)0.9948 (3)0.1070 (14)
H18A0.34090.64800.98370.160*
H18B0.17880.61751.04350.160*
H18C0.32370.55721.00430.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0445 (2)0.0376 (2)0.0428 (2)0.00619 (15)0.00895 (16)0.00716 (14)
O10.0614 (14)0.0476 (11)0.0846 (15)0.0100 (10)0.0218 (11)0.0174 (10)
O20.0703 (15)0.0618 (13)0.0802 (15)0.0159 (12)0.0099 (12)0.0233 (11)
O30.0850 (17)0.0835 (16)0.0595 (14)0.0191 (13)0.0220 (12)0.0124 (11)
O40.093 (2)0.118 (2)0.0690 (16)0.0104 (17)0.0052 (15)0.0033 (14)
O50.0630 (17)0.228 (3)0.0674 (17)0.041 (2)0.0048 (15)0.017 (2)
N10.0458 (13)0.0382 (12)0.0554 (14)0.0025 (10)0.0067 (11)0.0051 (9)
N210.0585 (14)0.0348 (11)0.0503 (13)0.0029 (10)0.0036 (11)0.0050 (10)
N30.0517 (14)0.0442 (12)0.0516 (13)0.0028 (10)0.0041 (11)0.0049 (10)
C10.0578 (18)0.0402 (15)0.0656 (19)0.0085 (13)0.0111 (15)0.0056 (13)
C20.0615 (19)0.0414 (15)0.073 (2)0.0018 (14)0.0145 (16)0.0057 (14)
C30.064 (2)0.0547 (18)0.0603 (18)0.0048 (15)0.0145 (15)0.0132 (14)
C40.0575 (18)0.0479 (16)0.0511 (16)0.0027 (13)0.0071 (14)0.0032 (12)
C50.0385 (14)0.0350 (13)0.0532 (15)0.0028 (11)0.0041 (12)0.0015 (12)
C60.0395 (15)0.0384 (14)0.0580 (17)0.0002 (11)0.0040 (12)0.0024 (12)
C70.0597 (19)0.0378 (15)0.0705 (19)0.0017 (13)0.0034 (15)0.0011 (13)
C80.070 (2)0.0445 (17)0.096 (3)0.0004 (16)0.0031 (19)0.0151 (17)
C90.095 (3)0.060 (2)0.078 (2)0.0021 (19)0.006 (2)0.0249 (18)
C100.089 (3)0.0603 (19)0.0561 (19)0.0026 (17)0.0034 (17)0.0115 (15)
C110.061 (2)0.0526 (17)0.0557 (17)0.0032 (15)0.0156 (15)0.0144 (14)
C120.067 (2)0.064 (2)0.096 (3)0.0001 (18)0.0172 (19)0.0176 (18)
C130.085 (3)0.059 (2)0.072 (2)0.0010 (18)0.0074 (18)0.0033 (16)
C140.133 (4)0.057 (2)0.098 (3)0.024 (2)0.007 (3)0.0036 (18)
C150.092 (3)0.0445 (17)0.054 (2)0.0105 (17)0.0142 (19)0.0013 (13)
C160.100 (3)0.064 (2)0.060 (2)0.008 (2)0.011 (2)0.0003 (15)
C170.096 (3)0.057 (2)0.080 (2)0.005 (2)0.017 (2)0.0024 (16)
C180.124 (4)0.090 (3)0.109 (3)0.006 (3)0.056 (3)0.014 (2)
Geometric parameters (Å, º) top
Co1—O31.943 (2)C4—H40.9300
Co1—O11.997 (2)C6—C71.394 (3)
Co1—N11.998 (2)C7—C81.346 (4)
Co1—N32.020 (2)C7—H70.9300
Co1—O52.215 (3)C8—C91.379 (5)
O1—C111.261 (4)C8—H80.9300
O2—C111.244 (3)C9—C101.360 (4)
O3—C151.269 (4)C9—H90.9300
O4—C151.238 (5)C10—H100.9300
O5—H5B0.888 (15)C11—C121.474 (4)
O5—H5A0.892 (15)C12—C131.260 (4)
N1—C51.334 (3)C12—H120.9300
N1—C11.354 (3)C13—C141.508 (4)
N21—C51.374 (3)C13—H130.9300
N21—C61.376 (3)C14—H14A0.9600
N21—H210.8600C14—H14B0.9600
N3—C61.336 (3)C14—H14C0.9600
N3—C101.352 (4)C15—C161.483 (5)
C1—C21.351 (4)C16—C171.275 (5)
C1—H10.9300C16—H160.9300
C2—C31.385 (4)C17—C181.527 (5)
C2—H20.9300C17—H170.9300
C3—C41.358 (4)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.403 (4)C18—H18C0.9600
O3—Co1—O187.19 (9)C8—C7—C6119.8 (3)
O3—Co1—N1175.67 (10)C8—C7—H7120.1
O1—Co1—N189.07 (8)C6—C7—H7120.1
O3—Co1—N392.23 (9)C7—C8—C9118.8 (3)
O1—Co1—N3156.63 (9)C7—C8—H8120.6
N1—Co1—N390.34 (8)C9—C8—H8120.6
O3—Co1—O593.20 (10)C10—C9—C8118.7 (3)
O1—Co1—O597.04 (13)C10—C9—H9120.6
N1—Co1—O589.44 (10)C8—C9—H9120.6
N3—Co1—O5106.31 (13)N3—C10—C9124.0 (3)
C11—O1—Co1112.95 (18)N3—C10—H10118.0
C15—O3—Co1128.7 (2)C9—C10—H10118.0
Co1—O5—H5B143 (4)O2—C11—O1123.2 (3)
Co1—O5—H5A101 (4)O2—C11—C12118.6 (3)
H5B—O5—H5A115 (5)O1—C11—C12118.2 (3)
C5—N1—C1117.3 (2)C13—C12—C11126.1 (4)
C5—N1—Co1126.52 (17)C13—C12—H12116.9
C1—N1—Co1116.10 (18)C11—C12—H12116.9
C5—N21—C6131.9 (2)C12—C13—C14126.9 (4)
C5—N21—H21114.0C12—C13—H13116.5
C6—N21—H21114.0C14—C13—H13116.5
C6—N3—C10116.1 (3)C13—C14—H14A109.5
C6—N3—Co1125.48 (18)C13—C14—H14B109.5
C10—N3—Co1118.2 (2)H14A—C14—H14B109.5
C2—C1—N1124.1 (3)C13—C14—H14C109.5
C2—C1—H1117.9H14A—C14—H14C109.5
N1—C1—H1117.9H14B—C14—H14C109.5
C1—C2—C3117.9 (3)O4—C15—O3125.7 (3)
C1—C2—H2121.1O4—C15—C16117.4 (3)
C3—C2—H2121.1O3—C15—C16116.9 (4)
C4—C3—C2120.0 (3)C17—C16—C15125.2 (4)
C4—C3—H3120.0C17—C16—H16117.4
C2—C3—H3120.0C15—C16—H16117.4
C3—C4—C5118.7 (3)C16—C17—C18124.9 (4)
C3—C4—H4120.7C16—C17—H17117.6
C5—C4—H4120.7C18—C17—H17117.6
N1—C5—N21120.9 (2)C17—C18—H18A109.5
N1—C5—C4121.9 (2)C17—C18—H18B109.5
N21—C5—C4117.2 (2)H18A—C18—H18B109.5
N3—C6—N21121.0 (2)C17—C18—H18C109.5
N3—C6—C7122.5 (3)H18A—C18—H18C109.5
N21—C6—C7116.5 (3)H18B—C18—H18C109.5
O3—Co1—O1—C1176.9 (2)Co1—N1—C5—C4173.3 (2)
N1—Co1—O1—C11100.9 (2)C6—N21—C5—N111.6 (4)
N3—Co1—O1—C1112.2 (3)C6—N21—C5—C4169.0 (3)
O5—Co1—O1—C11169.8 (2)C3—C4—C5—N11.7 (4)
O1—Co1—O3—C1584.9 (3)C3—C4—C5—N21178.9 (3)
N3—Co1—O3—C15118.5 (3)C10—N3—C6—N21175.6 (3)
O5—Co1—O3—C1512.0 (3)Co1—N3—C6—N2110.4 (4)
O1—Co1—N1—C5140.0 (2)C10—N3—C6—C73.5 (4)
N3—Co1—N1—C516.6 (2)Co1—N3—C6—C7170.5 (2)
O5—Co1—N1—C5123.0 (3)C5—N21—C6—N39.1 (4)
O1—Co1—N1—C136.6 (2)C5—N21—C6—C7170.0 (3)
N3—Co1—N1—C1166.8 (2)N3—C6—C7—C82.5 (5)
O5—Co1—N1—C160.5 (2)N21—C6—C7—C8176.7 (3)
O3—Co1—N3—C6157.8 (2)C6—C7—C8—C90.6 (5)
O1—Co1—N3—C669.7 (3)C7—C8—C9—C102.2 (5)
N1—Co1—N3—C618.8 (2)C6—N3—C10—C91.8 (5)
O5—Co1—N3—C6108.3 (2)Co1—N3—C10—C9172.7 (3)
O3—Co1—N3—C1016.1 (3)C8—C9—C10—N31.1 (6)
O1—Co1—N3—C10104.2 (3)Co1—O1—C11—O23.8 (4)
N1—Co1—N3—C10167.4 (2)Co1—O1—C11—C12177.7 (2)
O5—Co1—N3—C1077.8 (3)O2—C11—C12—C13164.5 (3)
C5—N1—C1—C22.3 (4)O1—C11—C12—C1314.1 (5)
Co1—N1—C1—C2174.6 (2)C11—C12—C13—C14177.4 (3)
N1—C1—C2—C30.3 (5)Co1—O3—C15—O420.5 (5)
C1—C2—C3—C41.9 (5)Co1—O3—C15—C16160.5 (2)
C2—C3—C4—C50.9 (4)O4—C15—C16—C17171.8 (3)
C1—N1—C5—N21177.4 (2)O3—C15—C16—C179.0 (5)
Co1—N1—C5—N216.1 (4)C15—C16—C17—C18180.0 (3)
C1—N1—C5—C43.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.89 (2)1.73 (3)2.577 (4)156 (6)
O5—H5B···O2i0.89 (2)1.86 (2)2.729 (3)166 (5)
N21—H21···O2ii0.861.952.798 (3)168
C8—H8···O4iii0.932.473.356 (4)160
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C4H5O2)2(C10H9N3)(H2O)]
Mr418.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1113 (7), 16.8303 (15), 15.9850 (14)
β (°) 91.291 (2)
V3)1912.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.781, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
9697, 3448, 2714
Rint0.064
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 0.96
No. of reflections3448
No. of parameters252
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.892 (15)1.73 (3)2.577 (4)156 (6)
O5—H5B···O2i0.888 (15)1.86 (2)2.729 (3)166 (5)
N21—H21···O2ii0.861.952.798 (3)167.6
C8—H8···O4iii0.932.473.356 (4)159.6
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The author is grateful to the Guangxi University for Nationalities for financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, H.-C., Li, J.-T., Wang, C.-C., Lin, T.-W., Lee, H.-C., Lee, G.-H. & Peng, S.-M. (1999). Eur. J. Inorg. Chem. pp. 1243–1251.  CrossRef Google Scholar
First citationPeng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Magn. Mater. 209, 80–83.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. (2007). Acta Cryst. E63, o4413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, C., Qiao, H.-B., Mao, H.-Y., Zhang, H.-Y., Wu, Q.-A., Liu, H.-L. & Zhu, Y. (2004). J. Zheng Zhou Univ. 36, 67–70.  CAS Google Scholar
First citationZhang, L. (2007). Acta Cryst. E63, m2950.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds