organic compounds
Methyl 2-{[(4-hydroxyphenyl)(methoxycarbonyl)methyl]aminocarbonyl}ethanoate hemihydrate
aInstitute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my
In the structure of the title compound, C13H15NO6·0.5H2O, the water O atom lies on a twofold rotation axis. The methoxycarbonylmethyl and amino groups are essentially coplanar and the methoxycarbonylmethyl group makes a dihedral angle of 79.73 (10)° with the mean plane of the hydroxyphenyl ring. The amino and methoxycarbonylmethyl groups are involved in an intramolecular N—H⋯O hydrogen bond which generates an S(5) ring motif. In the molecules are linked via N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O interactions into a two-dimensional network parallel to the (01) plane. The is further stabilized by C—H⋯π interactions.
Related literature
For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the biological properties of compounds containing tetramic acid, see for example: Iida et al. (1986); Matkhalikova et al. (1969); Reddy & Rao (2006); Reiner (2007); Royles (1996). For the syntheses of compounds containing tetramic acid units, see for example: Steglich (1989); Royles (1996).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808005552/sj2467sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808005552/sj2467Isup2.hkl
The title compound was synthesized via condensation between an equimolar amount of hydroxyphenylglycine methylester (10.0 g, 60 mmol) and methylmalonate potassium salt (9.4 g, 60 mmol) in acetonitrile/water (140:40 ml) at 273 K. The mixture was stirred for 2 h in the presence of dicyclohexylcarbodiimide, which acted as a catalyst and a peptide-coupling agent. The white precipitate formed during the reaction was filtered and washed thoroughly with dichloromethane. The filtrate and the dichloromethane were combined and evaporated. The resulting crude product was partitioned between water and dichloromethane, and the dichloromethane extract was dried over anhydrous magnesium sulfate and evaporated. Colorless needle-shaped single crystals suitable for X-ray
were obtained by slow evaporation of dichloromethane/petroleum ether (5:1 v/v) solution after several days (10.93 g, 65%).The amino, hydroxyl and water hydrogen atoms were located in a difference map and refined isotropically. Hydrogen atoms attached to the carbon atoms were constrained in a riding motion approximation with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso = 1.2Ueq(C) for CH, 0.97 Å, Uiso = 1.2Ueq(C) for CH2, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. In the absence of significant
effects, a total of 1388 Friedel pairs were merged before final refinement.Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. N—H···O hydrogen bonds are drawn as dashed lines. | |
Fig. 2. The crystal packing of (I), viewed along the [102] direction. Hydrogen bonds are drawn as dashed lines. |
C13H15NO6·0.5H2O | F(000) = 612 |
Mr = 290.27 | Dx = 1.378 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 2248 reflections |
a = 22.7764 (12) Å | θ = 1.8–30.0° |
b = 5.3046 (3) Å | µ = 0.11 mm−1 |
c = 13.0686 (6) Å | T = 100 K |
β = 117.612 (3)° | Needle, colorless |
V = 1399.11 (13) Å3 | 0.41 × 0.19 × 0.04 mm |
Z = 4 |
Bruker SMART APEX2 CCD area-detector diffractometer | 2248 independent reflections |
Radiation source: fine-focus sealed tube | 1884 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.33 pixels mm-1 | θmax = 30.0°, θmin = 1.8° |
ω scans | h = −29→31 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −7→7 |
Tmin = 0.956, Tmax = 0.996 | l = −18→18 |
9426 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0406P)2 + 0.4523P] where P = (Fo2 + 2Fc2)/3 |
2248 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.39 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
C13H15NO6·0.5H2O | V = 1399.11 (13) Å3 |
Mr = 290.27 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 22.7764 (12) Å | µ = 0.11 mm−1 |
b = 5.3046 (3) Å | T = 100 K |
c = 13.0686 (6) Å | 0.41 × 0.19 × 0.04 mm |
β = 117.612 (3)° |
Bruker SMART APEX2 CCD area-detector diffractometer | 2248 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1884 reflections with I > 2σ(I) |
Tmin = 0.956, Tmax = 0.996 | Rint = 0.035 |
9426 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.39 e Å−3 |
2248 reflections | Δρmin = −0.24 e Å−3 |
200 parameters |
Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.5000 | 0.8858 (5) | 0.5000 | 0.0242 (5) | |
H1W | 0.4734 (14) | 0.998 (7) | 0.518 (2) | 0.058 (9)* | |
O1 | 0.41331 (9) | 0.1694 (5) | 0.55170 (15) | 0.0512 (6) | |
O2 | 0.36387 (7) | 0.1785 (3) | 0.28492 (11) | 0.0255 (3) | |
O3 | 0.51628 (9) | 0.7925 (4) | 0.27318 (16) | 0.0435 (5) | |
O4 | 0.32338 (7) | 0.3629 (4) | 0.53519 (12) | 0.0311 (4) | |
O5 | 0.52565 (7) | 0.5121 (3) | 0.15432 (12) | 0.0250 (3) | |
O6 | 0.23720 (7) | 0.3718 (3) | −0.23284 (11) | 0.0232 (3) | |
H1O6 | 0.2058 (14) | 0.488 (7) | −0.250 (2) | 0.046 (8)* | |
N1 | 0.43133 (8) | 0.5081 (4) | 0.31026 (13) | 0.0196 (4) | |
H1N1 | 0.4513 (13) | 0.650 (6) | 0.351 (2) | 0.039 (7)* | |
C1 | 0.37123 (10) | 0.3244 (4) | 0.50613 (16) | 0.0231 (5) | |
C2 | 0.36758 (10) | 0.5050 (5) | 0.41546 (17) | 0.0239 (4) | |
H2A | 0.3963 | 0.6477 | 0.4522 | 0.029* | |
H2B | 0.3226 | 0.5676 | 0.3728 | 0.029* | |
C3 | 0.38810 (9) | 0.3812 (5) | 0.33240 (15) | 0.0201 (4) | |
C4 | 0.44916 (9) | 0.4168 (4) | 0.22326 (14) | 0.0178 (4) | |
H4 | 0.4684 | 0.2479 | 0.2450 | 0.021* | |
C5 | 0.50120 (10) | 0.5952 (4) | 0.22279 (16) | 0.0213 (4) | |
C6 | 0.32471 (12) | 0.1992 (6) | 0.62502 (18) | 0.0382 (6) | |
H6A | 0.3150 | 0.0295 | 0.5966 | 0.057* | |
H6B | 0.2921 | 0.2546 | 0.6473 | 0.057* | |
H6C | 0.3678 | 0.2051 | 0.6907 | 0.057* | |
C7 | 0.57232 (10) | 0.6792 (5) | 0.14299 (18) | 0.0275 (5) | |
H7A | 0.5530 | 0.8438 | 0.1209 | 0.041* | |
H7B | 0.5831 | 0.6152 | 0.0850 | 0.041* | |
H7C | 0.6119 | 0.6897 | 0.2155 | 0.041* | |
C8 | 0.39035 (9) | 0.4061 (4) | 0.10253 (14) | 0.0173 (4) | |
C9 | 0.34208 (9) | 0.5916 (4) | 0.06352 (15) | 0.0185 (4) | |
H9 | 0.3447 | 0.7234 | 0.1124 | 0.022* | |
C10 | 0.28956 (9) | 0.5828 (4) | −0.04846 (15) | 0.0186 (4) | |
H10 | 0.2571 | 0.7071 | −0.0738 | 0.022* | |
C11 | 0.28619 (9) | 0.3874 (4) | −0.12164 (14) | 0.0171 (4) | |
C12 | 0.33391 (9) | 0.1994 (4) | −0.08248 (15) | 0.0202 (4) | |
H12 | 0.3312 | 0.0669 | −0.1311 | 0.024* | |
C13 | 0.38579 (9) | 0.2087 (4) | 0.02927 (15) | 0.0189 (4) | |
H13 | 0.4177 | 0.0820 | 0.0552 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.0252 (10) | 0.0249 (12) | 0.0262 (9) | 0.000 | 0.0151 (9) | 0.000 |
O1 | 0.0576 (11) | 0.0695 (15) | 0.0432 (9) | 0.0427 (12) | 0.0373 (9) | 0.0351 (11) |
O2 | 0.0250 (7) | 0.0272 (8) | 0.0224 (6) | −0.0058 (7) | 0.0094 (6) | 0.0016 (7) |
O3 | 0.0540 (11) | 0.0432 (12) | 0.0547 (11) | −0.0279 (9) | 0.0432 (10) | −0.0289 (9) |
O4 | 0.0244 (7) | 0.0455 (11) | 0.0303 (7) | 0.0075 (8) | 0.0185 (6) | 0.0128 (8) |
O5 | 0.0257 (7) | 0.0254 (8) | 0.0320 (7) | −0.0051 (7) | 0.0204 (6) | −0.0065 (7) |
O6 | 0.0202 (7) | 0.0268 (9) | 0.0176 (6) | 0.0031 (7) | 0.0046 (5) | −0.0047 (6) |
N1 | 0.0196 (8) | 0.0240 (9) | 0.0163 (7) | −0.0034 (8) | 0.0093 (6) | −0.0012 (7) |
C1 | 0.0205 (10) | 0.0301 (13) | 0.0188 (8) | 0.0034 (9) | 0.0093 (7) | 0.0033 (8) |
C2 | 0.0220 (9) | 0.0286 (11) | 0.0240 (9) | 0.0026 (9) | 0.0132 (8) | 0.0046 (9) |
C3 | 0.0159 (8) | 0.0270 (11) | 0.0148 (7) | 0.0007 (9) | 0.0048 (7) | 0.0048 (9) |
C4 | 0.0174 (8) | 0.0200 (10) | 0.0166 (7) | −0.0016 (8) | 0.0083 (7) | −0.0003 (8) |
C5 | 0.0200 (9) | 0.0237 (11) | 0.0199 (8) | −0.0016 (9) | 0.0091 (7) | −0.0025 (9) |
C6 | 0.0391 (13) | 0.0542 (17) | 0.0285 (10) | −0.0056 (14) | 0.0218 (10) | 0.0085 (13) |
C7 | 0.0255 (10) | 0.0311 (12) | 0.0337 (10) | −0.0055 (10) | 0.0203 (9) | −0.0048 (10) |
C8 | 0.0175 (8) | 0.0181 (10) | 0.0175 (7) | −0.0034 (8) | 0.0091 (7) | 0.0017 (8) |
C9 | 0.0218 (9) | 0.0178 (10) | 0.0184 (8) | −0.0006 (8) | 0.0115 (7) | −0.0022 (8) |
C10 | 0.0191 (9) | 0.0168 (10) | 0.0208 (8) | 0.0018 (8) | 0.0099 (7) | 0.0011 (8) |
C11 | 0.0157 (8) | 0.0187 (10) | 0.0168 (7) | −0.0006 (8) | 0.0074 (7) | 0.0003 (8) |
C12 | 0.0233 (10) | 0.0183 (10) | 0.0196 (8) | −0.0002 (9) | 0.0105 (8) | −0.0030 (8) |
C13 | 0.0182 (9) | 0.0174 (10) | 0.0211 (8) | 0.0011 (8) | 0.0092 (7) | 0.0000 (8) |
O1W—H1W | 0.95 (3) | C4—C8 | 1.526 (2) |
O1—C1 | 1.192 (3) | C4—H4 | 0.9800 |
O2—C3 | 1.236 (3) | C6—H6A | 0.9600 |
O3—C5 | 1.199 (3) | C6—H6B | 0.9600 |
O4—C1 | 1.326 (2) | C6—H6C | 0.9600 |
O4—C6 | 1.449 (3) | C7—H7A | 0.9600 |
O5—C5 | 1.329 (3) | C7—H7B | 0.9600 |
O5—C7 | 1.443 (3) | C7—H7C | 0.9600 |
O6—C11 | 1.364 (2) | C8—C9 | 1.385 (3) |
O6—H1O6 | 0.89 (3) | C8—C13 | 1.390 (3) |
N1—C3 | 1.331 (3) | C9—C10 | 1.397 (2) |
N1—C4 | 1.456 (2) | C9—H9 | 0.9300 |
N1—H1N1 | 0.91 (3) | C10—C11 | 1.388 (3) |
C1—C2 | 1.496 (3) | C10—H10 | 0.9300 |
C2—C3 | 1.516 (3) | C11—C12 | 1.386 (3) |
C2—H2A | 0.9700 | C12—C13 | 1.390 (2) |
C2—H2B | 0.9700 | C12—H12 | 0.9300 |
C4—C5 | 1.519 (3) | C13—H13 | 0.9300 |
C1—O4—C6 | 115.36 (18) | H6A—C6—H6B | 109.5 |
C5—O5—C7 | 115.06 (18) | O4—C6—H6C | 109.5 |
C11—O6—H1O6 | 112.7 (18) | H6A—C6—H6C | 109.5 |
C3—N1—C4 | 120.25 (18) | H6B—C6—H6C | 109.5 |
C3—N1—H1N1 | 120.7 (17) | O5—C7—H7A | 109.5 |
C4—N1—H1N1 | 119.0 (17) | O5—C7—H7B | 109.5 |
O1—C1—O4 | 122.7 (2) | H7A—C7—H7B | 109.5 |
O1—C1—C2 | 125.06 (19) | O5—C7—H7C | 109.5 |
O4—C1—C2 | 112.13 (18) | H7A—C7—H7C | 109.5 |
C1—C2—C3 | 111.5 (2) | H7B—C7—H7C | 109.5 |
C1—C2—H2A | 109.3 | C9—C8—C13 | 119.26 (16) |
C3—C2—H2A | 109.3 | C9—C8—C4 | 121.39 (18) |
C1—C2—H2B | 109.3 | C13—C8—C4 | 119.34 (18) |
C3—C2—H2B | 109.3 | C8—C9—C10 | 120.66 (18) |
H2A—C2—H2B | 108.0 | C8—C9—H9 | 119.7 |
O2—C3—N1 | 122.28 (19) | C10—C9—H9 | 119.7 |
O2—C3—C2 | 121.48 (19) | C11—C10—C9 | 119.58 (18) |
N1—C3—C2 | 116.2 (2) | C11—C10—H10 | 120.2 |
N1—C4—C5 | 107.25 (16) | C9—C10—H10 | 120.2 |
N1—C4—C8 | 113.02 (16) | O6—C11—C12 | 117.66 (18) |
C5—C4—C8 | 109.38 (15) | O6—C11—C10 | 122.39 (18) |
N1—C4—H4 | 109.0 | C12—C11—C10 | 119.95 (16) |
C5—C4—H4 | 109.0 | C11—C12—C13 | 120.13 (19) |
C8—C4—H4 | 109.0 | C11—C12—H12 | 119.9 |
O3—C5—O5 | 123.8 (2) | C13—C12—H12 | 119.9 |
O3—C5—C4 | 124.54 (19) | C12—C13—C8 | 120.40 (19) |
O5—C5—C4 | 111.55 (18) | C12—C13—H13 | 119.8 |
O4—C6—H6A | 109.5 | C8—C13—H13 | 119.8 |
O4—C6—H6B | 109.5 | ||
C6—O4—C1—O1 | −1.3 (3) | C8—C4—C5—O5 | −63.6 (2) |
C6—O4—C1—C2 | −178.40 (19) | N1—C4—C8—C9 | 38.6 (3) |
O1—C1—C2—C3 | 38.6 (3) | C5—C4—C8—C9 | −80.8 (2) |
O4—C1—C2—C3 | −144.42 (18) | N1—C4—C8—C13 | −142.68 (19) |
C4—N1—C3—O2 | 3.3 (3) | C5—C4—C8—C13 | 97.9 (2) |
C4—N1—C3—C2 | −174.03 (16) | C13—C8—C9—C10 | −0.5 (3) |
C1—C2—C3—O2 | 50.6 (2) | C4—C8—C9—C10 | 178.14 (18) |
C1—C2—C3—N1 | −132.06 (19) | C8—C9—C10—C11 | −0.7 (3) |
C3—N1—C4—C5 | −177.48 (17) | C9—C10—C11—O6 | −178.20 (18) |
C3—N1—C4—C8 | 61.9 (2) | C9—C10—C11—C12 | 1.5 (3) |
C7—O5—C5—O3 | −0.6 (3) | O6—C11—C12—C13 | 178.59 (19) |
C7—O5—C5—C4 | 176.08 (16) | C10—C11—C12—C13 | −1.2 (3) |
N1—C4—C5—O3 | −10.0 (3) | C11—C12—C13—C8 | −0.1 (3) |
C8—C4—C5—O3 | 113.0 (2) | C9—C8—C13—C12 | 0.9 (3) |
N1—C4—C5—O5 | 173.45 (16) | C4—C8—C13—C12 | −177.78 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1i | 0.95 (4) | 1.86 (3) | 2.803 (3) | 170 (3) |
N1—H1N1···O1W | 0.91 (3) | 2.14 (3) | 3.002 (3) | 157 (2) |
N1—H1N1···O3 | 0.91 (3) | 2.28 (3) | 2.669 (3) | 105 (2) |
O6—H1O6···O2ii | 0.89 (4) | 1.75 (3) | 2.638 (2) | 171 (3) |
C2—H2A···O1W | 0.97 | 2.49 | 3.363 (3) | 150 |
C2—H2B···O6ii | 0.97 | 2.34 | 3.146 (3) | 140 |
C6—H6B···O6iii | 0.96 | 2.49 | 3.420 (3) | 162 |
C7—H7B···Cg1iv | 0.96 | 2.68 | 3.574 (3) | 155 |
C10—H10···Cg1ii | 0.93 | 3.01 | 3.717 (2) | 134 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z; (iii) x, y, z+1; (iv) −x+1, y, −z. |
Experimental details
Crystal data | |
Chemical formula | C13H15NO6·0.5H2O |
Mr | 290.27 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 100 |
a, b, c (Å) | 22.7764 (12), 5.3046 (3), 13.0686 (6) |
β (°) | 117.612 (3) |
V (Å3) | 1399.11 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.41 × 0.19 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEX2 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.956, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9426, 2248, 1884 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.090, 1.06 |
No. of reflections | 2248 |
No. of parameters | 200 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O1i | 0.95 (4) | 1.86 (3) | 2.803 (3) | 170 (3) |
N1—H1N1···O1W | 0.91 (3) | 2.14 (3) | 3.002 (3) | 157 (2) |
N1—H1N1···O3 | 0.91 (3) | 2.28 (3) | 2.669 (3) | 105 (2) |
O6—H1O6···O2ii | 0.89 (4) | 1.75 (3) | 2.638 (2) | 171 (3) |
C2—H2A···O1W | 0.97 | 2.4893 | 3.363 (3) | 150 |
C2—H2B···O6ii | 0.97 | 2.3442 | 3.146 (3) | 140 |
C6—H6B···O6iii | 0.96 | 2.4939 | 3.420 (3) | 162 |
C7—H7B···Cg1iv | 0.96 | 2.6830 | 3.574 (3) | 155 |
C10—H10···Cg1ii | 0.93 | 3.0110 | 3.717 (2) | 134 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z; (iii) x, y, z+1; (iv) −x+1, y, −z. |
Footnotes
‡Additional correspondence author, e-mail: suchada.c@psu.ac.th.
Acknowledgements
The authors acknowledge the generous support of both the Universiti Teknologi MARA and the Universiti Sains Malaysia as well as the financial support of the Ministry of Science, Technology and Innovation (E-Science grant No. SF0050–02-01–01). HKF and SC thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Iida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett. 27, 5393–5396. CSD CrossRef Web of Science Google Scholar
Matkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr. 71, 13245z. Google Scholar
Reddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224–2227. Google Scholar
Reiner, S. (2007). Naturwissenschaften, 94, 1–11. Web of Science PubMed Google Scholar
Royles, B. J. L. (1996). Chem. Rev. 95, 1961–2001. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steglich, W. (1989). Pure Appl. Chem. 61, 281–288. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Natural products containing tetramic acid goups continue to attract the interest of chemists and biologists due to their challenging structures and remarkable biological properties (Iida et al., 1986; Matkhalikova et al., 1969; Reddy & Rao, 2006; Reiner, 2007; Royles, 1996). Among these, tetramic acids carrying an aromatic substituent on the ring are rarely found in nature (Reddy & Rao, 2006). The title compound, C13H15NO6, can act as an essential intermediate in the synthesis of compounds responsible for the orange-yellow colour of plasmodia from Leocarpus fragilis (Steglich, 1989; Royles, 1995). We have synthesized the title compound and its structure is reported here.
The asymmetric unit of the title compound contains one molecule of C13H15NO6 and half an H2O molecule with the O1W atom lying on a twofold rotation axis, (Fig. 1). The methoxycarbonylmethyl [C4/C5/C7/O3/O5] and the C3/N1/C4 amino sections of the molecule are essentially coplanar with a dihedral angle of 3.12 (10)° between them. An intramolecular N1—H1N1···O3 hydrogen bond (Fig. 1) generates an S(5) ring motif (Bernstein et al., 1995) and contributes to this planarity.
In the 3-oxopropanoate moiety [C1–C3/C6/O1/O2/O4], atoms C1, C2, C6, O1 and O4 lie on the same plane with C1 deviating by a maximum of -0.017 (2) Å. Similarly atoms C3, O2, C4, C5, N1 and O3 lie on the same plane with the maximum deviation -0.058 (2) Å for C4. The dihedral angle between these two planes is 70.29 (11) Å. The methoxycarbonylmethyl moiety makes a dihedral angle of 79.73 (10) Å with the hydroxyphenyl ring. The water molecule links with the C13H15NO6 molecule via an N1—H1N1···O1W hydrogen bond (Fig. 1). All bond lengths and angles show normal values (Allen et al., 1987).
In the crystal packing (Fig. 2), the molecules are stacked down both the [010] and [102] directions forming a two dimensional network parallel to the (-2 0 1) plane via N—H···O, O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The crystal is further stablized by C—H···π interactions (Table 1); Cg1 is the centroid of the C8–C13 phenyl ring.