metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m535-m536

Chlorido{6,6′-di­methyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III) mono­hydrate

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 February 2008; accepted 6 March 2008; online 12 March 2008)

In the title complex, [Mn(C22H18N2O2)Cl]·H2O, the MnIII center is in a distorted square-pyramidal configuration, with the N2O2 dianionic tetra­dentate Schiff base ligand in the basal plane and the chloride ion in the apical position. The dihedral angle between the two outer phenolate rings of the tetra­dentate ligand is 8.25 (8)°. The central benzene ring makes dihedral angles of 4.31 (8) and 7.37 (8)° with the two outer phenolate rings. The water mol­ecule links to the complex via an O—H⋯Cl hydrogen bond. In addition, in the crystal structure, weak C—H⋯O inter­actions link the mol­ecules into infinite one-dimensional chains along [010]. The crystal is further stabilized by O—H⋯O and O—H⋯Cl hydrogen bonds, together with weak C—H⋯π inter­actions

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see for example: Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3234-o3235.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]); Naskar et al. (2004[Naskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta, 357, 4257-4264.]). For background to the application of manganese complexes, see for example: Dixit & Srinivasan (1988[Dixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507-4509.]); Glatzel et al. (2004[Glatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946-9959.]); Lu et al. (2006[Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538-3548.]); Stallings et al. (1985[Stallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424-16432.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C22H18N2O2)Cl]·H2O

  • Mr = 450.79

  • Monoclinic, C 2/c

  • a = 27.1836 (6) Å

  • b = 6.8033 (1) Å

  • c = 21.8896 (4) Å

  • β = 108.976 (1)°

  • V = 3828.22 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100.0 (1) K

  • 0.42 × 0.26 × 0.11 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.714, Tmax = 0.915

  • 24765 measured reflections

  • 5586 independent reflections

  • 4459 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.10

  • 5586 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Cl1 0.87 2.54 3.3544 (16) 157
O1W—H2W1⋯O1i 0.84 2.43 3.191 (2) 151
O1W—H2W1⋯O2i 0.84 2.53 3.2642 (19) 146
C16—H16A⋯O1Wii 0.93 2.48 3.364 (2) 160
C7—H7ACg1iii 0.93 3.39 3.9811 (17) 123
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base ligands containing strong donor sites such as oxygen and imine nitrogen atoms and their metal complexes have been the subject of extensive investigation. Manganese complexes with Schiff base ligands have attracted considerable interest in the past decades and recently, due to their variety of applications in chemistry, biology, physics and advanced materials. They have been used as models for the oxygen-evolving complex of photosystem II (Glatzel et al., 2004), in catalysis (Dixit and Srinivasan, 1988), as single-molecule magnets (Lu et al., 2006) and serve as models for the active sites of manganese-containing metal enzymes (Stallings et al., 1985). Recently, we reported the crystal structure of 4,4'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol, (Eltayeb et al., 2007). We report here the crystal structure of a Mn(III) complex of the closely related ligand 2,2'-{1,2-phenylenebis[nitrilomethylylidene]}bis(6-methylphenol).

In the title complex molecule (Fig. 1), the coordination sphere of the MnIII ion is a slightly distorted square-pyramid consisting of the N2O2 coordination plane of the dianionic tetradentate Schiff base ligand (coordinating through N1, N2, O1 and O2) and the axially bound chloride ion. The Mn—O distances [Mn1—O1 = 1.8672 (11) Å and Mn1—O2 = 1.8587 (13) Å] and Mn—N distances [Mn1—N1 = 1.9887 (4) Å and Mn1—N2 = 1.9922 (13) Å are quite similar to those observed in other related MnIII complexes of N2O2 Schiff base ligands (Habibi et al., 2007; Mitra et al., 2006). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). Coordination of the the N2O2 chelate ligand to the MnIII ion results in the formation of a planar five-membered ring (Mn1/N1/N2/C8/C13) and two six-membered rings; the Mn1/O2/N2/C14/C15/C20 ring is almost planar whereas the Mn1/O1/N1/C1/C6/C7 ring adopts an envelope conformation with atom O1 displaced from the Mn1/N1/C1/C6/C7 plane by 0.159 (1) Å and with Cremer & Pople (1975) puckering parameters Q = 0.274 (1) °, θ = 61.3 (4) ° and ϕ = 12.8 (4) °. The dihedral angle between the two outer phenolate rings [C1–C6 and C15–C20] of the Schiff base ligand is 8.25 (8) °. The central benzene ring (C8–C13) makes dihedral angles of 4.31 (8) ° and 7.37 (8) ° with the two outer phenolate rings, respectively. The water molecule forms an O—H···Cl hydrogen bond with the complex.

In the crystal packing (Fig. 2), a weak C—H···O interaction [C16—H16···O1W; symmetry code -x, 1 - y, -z (Table 1)] links the molecules into infinite one-dimensional chains along the [0 1 0] direction. The crystal is further stabilized by O—H···O and O—H···Cl hydrogen bonds, together with weak C—H···π interactions (Table 1); Cg1 is the centroid of the C1–C6 benzene ring.

Related literature top

For bond-length data, see: Allen et al. (1987). For details of ring conformations, see: Cremer & Pople (1975). For related structures, see for example: Eltayeb et al. (2007); Habibi et al. (2007); Mitra et al. (2006); Naskar et al. (2004). For background to the application of manganese complexes, see for example: Dixit & Srinivasan (1988); Glatzel et al. (2004); Lu et al. (2006); Stallings et al. (1985). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

The title compound was synthesized by adding 2-hydroxy-3-methylbenzaldehyde (0.5 ml, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (30 ml). The mixture was refluxed with stirring for half an hour. Manganese chloride tetrahydrate (0.394 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for three hours. A brown precipitate was obtained, washed with about 5 ml e thanol, dried, and then washed with copious quantities of diethylether. Brown single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

All H atoms were placed in calculated positions with d(O—H) = 0.84 and 0.87 Å, Uiso=1.2Ueq, d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso = 1.2Ueq(C) for CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C15 and the deepest hole is located at 0.66 Å from Mn1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The O—H···Cl hydrogen bond is drawn as a dashed line
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis showing the chains running along the [0 1 0] direction. Hydrogen bonds are drawn as dashed lines.
Chlorido{6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III) monohydrate top
Crystal data top
[Mn(C22H18N2O2)Cl]·H2OF(000) = 1856
Mr = 450.79Dx = 1.564 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5586 reflections
a = 27.1836 (6) Åθ = 2.1–30.0°
b = 6.8033 (1) ŵ = 0.86 mm1
c = 21.8896 (4) ÅT = 100 K
β = 108.976 (1)°Block, brown
V = 3828.22 (12) Å30.42 × 0.26 × 0.11 mm
Z = 8
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5586 independent reflections
Radiation source: fine-focus sealed tube4459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 3838
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.714, Tmax = 0.915l = 3030
24765 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.049P)2 + 1.3516P]
where P = (Fo2 + 2Fc2)/3
5586 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Mn(C22H18N2O2)Cl]·H2OV = 3828.22 (12) Å3
Mr = 450.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.1836 (6) ŵ = 0.86 mm1
b = 6.8033 (1) ÅT = 100 K
c = 21.8896 (4) Å0.42 × 0.26 × 0.11 mm
β = 108.976 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5586 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4459 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.915Rint = 0.038
24765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.10Δρmax = 0.49 e Å3
5586 reflectionsΔρmin = 0.39 e Å3
264 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.132825 (10)0.85182 (4)0.049972 (11)0.01683 (8)
Cl10.174472 (18)0.53896 (6)0.07957 (2)0.02546 (11)
O10.17748 (5)1.01562 (18)0.11197 (5)0.0196 (3)
O20.08842 (5)0.8545 (2)0.09903 (6)0.0257 (3)
N10.16961 (6)0.9072 (2)0.01268 (6)0.0174 (3)
N20.07481 (6)0.7877 (2)0.03041 (6)0.0169 (3)
C10.22593 (6)1.0630 (2)0.11779 (8)0.0177 (3)
C20.25769 (7)1.1380 (2)0.17830 (8)0.0185 (3)
C30.30824 (7)1.1903 (3)0.18499 (8)0.0216 (4)
H3A0.32941.23740.22470.026*
C40.32889 (7)1.1756 (3)0.13454 (9)0.0226 (4)
H4A0.36301.21360.14080.027*
C50.29856 (7)1.1049 (3)0.07576 (8)0.0207 (3)
H5A0.31211.09600.04190.025*
C60.24664 (7)1.0451 (2)0.06635 (8)0.0181 (3)
C70.21695 (7)0.9778 (2)0.00333 (8)0.0178 (3)
H7A0.23240.98460.02880.021*
C80.14187 (7)0.8456 (2)0.07694 (8)0.0175 (3)
C90.16154 (7)0.8447 (2)0.12824 (8)0.0207 (3)
H9A0.19530.88730.12230.025*
C100.13042 (8)0.7801 (3)0.18802 (8)0.0237 (4)
H10A0.14340.77980.22250.028*
C110.08000 (8)0.7153 (3)0.19751 (8)0.0240 (4)
H11A0.05960.67150.23810.029*
C120.05992 (7)0.7154 (3)0.14702 (8)0.0219 (4)
H12A0.02620.67220.15350.026*
C130.09089 (7)0.7810 (2)0.08629 (7)0.0178 (3)
C140.02675 (7)0.7584 (2)0.03375 (7)0.0175 (3)
H14A0.00300.73340.07440.021*
C150.00722 (6)0.7612 (2)0.01947 (7)0.0165 (3)
C160.04602 (7)0.7183 (2)0.00705 (8)0.0194 (3)
H16A0.06680.68820.03480.023*
C170.06737 (7)0.7204 (3)0.05540 (8)0.0209 (3)
H17A0.10250.69310.04660.025*
C180.03579 (7)0.7639 (3)0.11849 (8)0.0228 (4)
H18A0.05050.76460.15140.027*
C190.01650 (7)0.8058 (3)0.13328 (8)0.0226 (4)
C200.03867 (7)0.8075 (2)0.08341 (8)0.0181 (3)
C210.23506 (7)1.1618 (3)0.23208 (8)0.0228 (4)
H21A0.26271.18040.27220.034*
H21B0.21561.04620.23480.034*
H21C0.21241.27410.22360.034*
C220.05095 (8)0.8465 (4)0.20117 (9)0.0432 (6)
H22A0.02990.86820.22820.065*
H22B0.07160.96120.20160.065*
H22C0.07340.73590.21710.065*
O1W0.10173 (6)0.3038 (2)0.15433 (6)0.0365 (4)
H1W10.12100.39090.14370.055*
H2W10.11240.19850.14260.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01223 (13)0.02391 (14)0.01463 (12)0.00348 (10)0.00478 (9)0.00113 (9)
Cl10.0266 (2)0.0250 (2)0.0228 (2)0.00082 (18)0.00529 (17)0.00321 (15)
O10.0134 (6)0.0263 (6)0.0202 (5)0.0048 (5)0.0070 (5)0.0047 (5)
O20.0138 (6)0.0470 (8)0.0169 (5)0.0103 (6)0.0060 (5)0.0055 (5)
N10.0156 (7)0.0198 (6)0.0170 (6)0.0003 (6)0.0056 (5)0.0001 (5)
N20.0163 (7)0.0194 (6)0.0147 (6)0.0012 (6)0.0049 (5)0.0005 (5)
C10.0132 (8)0.0184 (8)0.0218 (7)0.0005 (6)0.0061 (6)0.0010 (6)
C20.0143 (8)0.0195 (8)0.0215 (7)0.0001 (6)0.0053 (6)0.0002 (6)
C30.0133 (8)0.0227 (8)0.0264 (8)0.0020 (7)0.0030 (7)0.0015 (6)
C40.0122 (8)0.0242 (9)0.0314 (9)0.0012 (7)0.0072 (7)0.0019 (7)
C50.0164 (8)0.0219 (8)0.0267 (8)0.0008 (7)0.0108 (7)0.0035 (6)
C60.0134 (8)0.0191 (8)0.0221 (7)0.0003 (6)0.0063 (6)0.0022 (6)
C70.0154 (8)0.0191 (8)0.0207 (7)0.0009 (6)0.0082 (6)0.0017 (6)
C80.0191 (8)0.0174 (7)0.0162 (7)0.0012 (6)0.0060 (6)0.0011 (6)
C90.0222 (9)0.0201 (8)0.0218 (8)0.0017 (7)0.0100 (7)0.0031 (6)
C100.0291 (10)0.0254 (8)0.0192 (7)0.0043 (8)0.0113 (7)0.0020 (6)
C110.0276 (10)0.0270 (9)0.0158 (7)0.0013 (8)0.0047 (7)0.0002 (6)
C120.0213 (9)0.0254 (8)0.0181 (7)0.0004 (7)0.0054 (7)0.0002 (6)
C130.0192 (8)0.0197 (8)0.0152 (7)0.0012 (7)0.0065 (6)0.0011 (6)
C140.0158 (8)0.0187 (8)0.0159 (7)0.0013 (6)0.0024 (6)0.0010 (6)
C150.0138 (8)0.0174 (7)0.0178 (7)0.0004 (6)0.0044 (6)0.0006 (6)
C160.0161 (8)0.0209 (8)0.0195 (7)0.0023 (7)0.0032 (6)0.0016 (6)
C170.0123 (8)0.0248 (8)0.0256 (8)0.0037 (7)0.0060 (6)0.0015 (7)
C180.0153 (9)0.0325 (9)0.0221 (8)0.0043 (7)0.0081 (7)0.0007 (7)
C190.0151 (8)0.0346 (9)0.0184 (7)0.0055 (7)0.0061 (6)0.0022 (7)
C200.0131 (8)0.0236 (8)0.0177 (7)0.0040 (6)0.0051 (6)0.0011 (6)
C210.0173 (9)0.0272 (9)0.0232 (8)0.0018 (7)0.0056 (7)0.0018 (7)
C220.0216 (10)0.0924 (19)0.0182 (8)0.0194 (11)0.0100 (8)0.0081 (10)
O1W0.0398 (9)0.0460 (8)0.0237 (6)0.0046 (7)0.0105 (6)0.0020 (6)
Geometric parameters (Å, º) top
Mn1—O21.8585 (13)C10—C111.389 (3)
Mn1—O11.8671 (11)C10—H10A0.9300
Mn1—N11.9786 (14)C11—C121.383 (3)
Mn1—N21.9921 (13)C11—H11A0.9300
Mn1—Cl12.3989 (5)C12—C131.396 (2)
O1—C11.321 (2)C12—H12A0.9300
O2—C201.322 (2)C14—C151.429 (2)
N1—C71.310 (2)C14—H14A0.9300
N1—C81.426 (2)C15—C161.413 (2)
N2—C141.300 (2)C15—C201.418 (2)
N2—C131.427 (2)C16—C171.363 (2)
C1—C61.418 (2)C16—H16A0.9300
C1—C21.420 (2)C17—C181.400 (2)
C2—C31.380 (2)C17—H17A0.9300
C2—C211.504 (2)C18—C191.381 (2)
C3—C41.396 (3)C18—H18A0.9300
C3—H3A0.9300C19—C201.408 (2)
C4—C51.370 (2)C19—C221.502 (2)
C4—H4A0.9300C21—H21A0.9600
C5—C61.418 (2)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C71.428 (2)C22—H22A0.9600
C7—H7A0.9300C22—H22B0.9600
C8—C91.392 (2)C22—H22C0.9600
C8—C131.404 (2)O1W—H1W10.8718
C9—C101.379 (2)O1W—H2W10.8438
C9—H9A0.9300
O2—Mn1—O188.00 (5)C9—C10—H10A119.5
O2—Mn1—N1165.54 (6)C11—C10—H10A119.5
O1—Mn1—N191.97 (5)C12—C11—C10120.46 (16)
O2—Mn1—N292.07 (6)C12—C11—H11A119.8
O1—Mn1—N2156.00 (6)C10—C11—H11A119.8
N1—Mn1—N282.12 (6)C11—C12—C13119.28 (17)
O2—Mn1—Cl1101.00 (4)C11—C12—H12A120.4
O1—Mn1—Cl1101.25 (4)C13—C12—H12A120.4
N1—Mn1—Cl193.19 (4)C12—C13—C8120.00 (16)
N2—Mn1—Cl1102.29 (4)C12—C13—N2124.66 (16)
C1—O1—Mn1127.44 (11)C8—C13—N2115.34 (14)
C20—O2—Mn1130.55 (11)N2—C14—C15125.81 (14)
C7—N1—C8122.01 (15)N2—C14—H14A117.1
C7—N1—Mn1123.94 (11)C15—C14—H14A117.1
C8—N1—Mn1113.79 (11)C16—C15—C20119.12 (15)
C14—N2—C13121.95 (13)C16—C15—C14117.97 (14)
C14—N2—Mn1125.15 (11)C20—C15—C14122.91 (15)
C13—N2—Mn1112.88 (11)C17—C16—C15121.10 (15)
O1—C1—C6122.88 (14)C17—C16—H16A119.4
O1—C1—C2117.53 (15)C15—C16—H16A119.4
C6—C1—C2119.58 (15)C16—C17—C18119.26 (16)
C3—C2—C1118.29 (16)C16—C17—H17A120.4
C3—C2—C21122.38 (15)C18—C17—H17A120.4
C1—C2—C21119.32 (15)C19—C18—C17121.95 (17)
C2—C3—C4122.69 (16)C19—C18—H18A119.0
C2—C3—H3A118.7C17—C18—H18A119.0
C4—C3—H3A118.7C18—C19—C20119.16 (15)
C5—C4—C3119.62 (17)C18—C19—C22122.21 (17)
C5—C4—H4A120.2C20—C19—C22118.63 (16)
C3—C4—H4A120.2O2—C20—C19117.46 (14)
C4—C5—C6120.24 (16)O2—C20—C15123.15 (15)
C4—C5—H5A119.9C19—C20—C15119.39 (15)
C6—C5—H5A119.9C2—C21—H21A109.5
C5—C6—C1119.56 (15)C2—C21—H21B109.5
C5—C6—C7117.09 (15)H21A—C21—H21B109.5
C1—C6—C7123.28 (15)C2—C21—H21C109.5
N1—C7—C6124.99 (15)H21A—C21—H21C109.5
N1—C7—H7A117.5H21B—C21—H21C109.5
C6—C7—H7A117.5C19—C22—H22A109.5
C9—C8—C13120.07 (15)C19—C22—H22B109.5
C9—C8—N1125.34 (16)H22A—C22—H22B109.5
C13—C8—N1114.59 (14)C19—C22—H22C109.5
C10—C9—C8119.27 (17)H22A—C22—H22C109.5
C10—C9—H9A120.4H22B—C22—H22C109.5
C8—C9—H9A120.4H1W1—O1W—H2W1101.5
C9—C10—C11120.92 (17)
O2—Mn1—O1—C1168.47 (14)C5—C6—C7—N1175.99 (16)
N1—Mn1—O1—C126.00 (14)C1—C6—C7—N17.1 (3)
N2—Mn1—O1—C1100.93 (18)C7—N1—C8—C92.8 (3)
Cl1—Mn1—O1—C167.65 (13)Mn1—N1—C8—C9171.59 (13)
O1—Mn1—O2—C20162.44 (16)C7—N1—C8—C13177.59 (15)
N1—Mn1—O2—C2072.3 (3)Mn1—N1—C8—C138.05 (18)
N2—Mn1—O2—C206.45 (16)C13—C8—C9—C100.0 (2)
Cl1—Mn1—O2—C2096.49 (15)N1—C8—C9—C10179.64 (16)
O2—Mn1—N1—C7109.0 (2)C8—C9—C10—C110.3 (3)
O1—Mn1—N1—C719.33 (14)C9—C10—C11—C120.3 (3)
N2—Mn1—N1—C7175.97 (14)C10—C11—C12—C130.1 (3)
Cl1—Mn1—N1—C782.06 (13)C11—C12—C13—C80.1 (2)
O2—Mn1—N1—C876.8 (2)C11—C12—C13—N2179.76 (15)
O1—Mn1—N1—C8166.43 (11)C9—C8—C13—C120.2 (2)
N2—Mn1—N1—C89.80 (11)N1—C8—C13—C12179.47 (15)
Cl1—Mn1—N1—C892.18 (11)C9—C8—C13—N2179.84 (14)
O2—Mn1—N2—C142.08 (14)N1—C8—C13—N20.2 (2)
O1—Mn1—N2—C1491.82 (19)C14—N2—C13—C1210.0 (3)
N1—Mn1—N2—C14168.78 (14)Mn1—N2—C13—C12171.41 (13)
Cl1—Mn1—N2—C1499.64 (13)C14—N2—C13—C8170.41 (15)
O2—Mn1—N2—C13176.49 (11)Mn1—N2—C13—C88.22 (18)
O1—Mn1—N2—C1386.76 (17)C13—N2—C14—C15179.65 (15)
N1—Mn1—N2—C139.79 (11)Mn1—N2—C14—C151.9 (2)
Cl1—Mn1—N2—C1381.78 (11)N2—C14—C15—C16177.54 (16)
Mn1—O1—C1—C620.1 (2)N2—C14—C15—C203.3 (3)
Mn1—O1—C1—C2161.02 (11)C20—C15—C16—C170.2 (2)
O1—C1—C2—C3179.27 (15)C14—C15—C16—C17179.31 (15)
C6—C1—C2—C30.3 (2)C15—C16—C17—C180.6 (3)
O1—C1—C2—C210.6 (2)C16—C17—C18—C190.3 (3)
C6—C1—C2—C21178.32 (15)C17—C18—C19—C200.8 (3)
C1—C2—C3—C41.1 (3)C17—C18—C19—C22178.0 (2)
C21—C2—C3—C4177.49 (16)Mn1—O2—C20—C19173.81 (12)
C2—C3—C4—C50.6 (3)Mn1—O2—C20—C156.8 (3)
C3—C4—C5—C60.6 (3)C18—C19—C20—O2177.84 (17)
C4—C5—C6—C11.4 (2)C22—C19—C20—O23.2 (3)
C4—C5—C6—C7178.40 (15)C18—C19—C20—C151.6 (3)
O1—C1—C6—C5178.01 (15)C22—C19—C20—C15177.32 (18)
C2—C1—C6—C50.9 (2)C16—C15—C20—O2178.13 (16)
O1—C1—C6—C71.2 (3)C14—C15—C20—O21.0 (3)
C2—C1—C6—C7177.73 (15)C16—C15—C20—C191.3 (2)
C8—N1—C7—C6178.93 (15)C14—C15—C20—C19179.62 (16)
Mn1—N1—C7—C67.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.872.543.3544 (16)157
O1W—H2W1···O1i0.842.433.191 (2)151
O1W—H2W1···O2i0.842.533.2642 (19)146
C16—H16A···O1Wii0.932.483.364 (2)160
C7—H7A···Cg1iii0.933.393.9811 (17)123
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C22H18N2O2)Cl]·H2O
Mr450.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.1836 (6), 6.8033 (1), 21.8896 (4)
β (°) 108.976 (1)
V3)3828.22 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.42 × 0.26 × 0.11
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.714, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
24765, 5586, 4459
Rint0.038
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.10
No. of reflections5586
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.872.53483.3544 (16)157
O1W—H2W1···O1i0.842.42873.191 (2)151
O1W—H2W1···O2i0.842.53133.2642 (19)146
C16—H16A···O1Wii0.932.47683.364 (2)160
C7—H7A···Cg1iii0.933.39183.9811 (17)123
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+5/2, z.
 

Footnotes

On study leave from: International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507–4509.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3234–o3235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946–9959.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationNaskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta, 357, 4257–4264.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424–16432.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m535-m536
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds