metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m570-m571

Chlorido{5,5′-di­methyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III)

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 March 2008; accepted 18 March 2008; online 29 March 2008)

In the title complex, [Mn(C22H18N2O2)Cl], the MnIII center is in a distorted square-pyramidal configuration; the basal plane is formed by the N2O2 donors of the tetra­dentate Schiff base dianion, with the two phenol O atoms and two imine N atoms each mutually cis. The chloride ion occupies the apical coordination site. The dihedral angle between the two outer phenolate rings of the tetra­dentate ligand is 18.24 (9)°. The central benzene ring makes dihedral angles of 13.71 (8) and 30.50 (8)° with the two outer phenolate rings. In the crystal structure, weak C—H⋯Cl inter­actions link the mol­ecules into screw helices along the b direction. These helices are further connected by weak C—H⋯O inter­actions into a three-dimensional network. The crystal structure is further stabilized by C—H⋯π inter­actions involving the central benzene ring.

Related literature

For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see, for example: Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m535-m536.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Mitra et al. (2006[Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997-2003.]). For background to applications of manganese complexes, see, for example: Dixit & Srinivasan (1988[Dixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507-4509.]); Glatzel et al. (2004[Glatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946-9959.]); Lu et al. (2006[Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538-3548.]); Stallings et al. (1985[Stallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424-16432.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C22H18N2O2)Cl]

  • Mr = 432.77

  • Monoclinic, C 2/c

  • a = 20.9593 (5) Å

  • b = 13.5897 (3) Å

  • c = 14.9316 (3) Å

  • β = 119.641 (1)°

  • V = 3696.43 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 100.0 (1) K

  • 0.56 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.639, Tmax = 0.852

  • 35769 measured reflections

  • 8109 independent reflections

  • 5992 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.07

  • 8109 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯Cl1i 0.93 2.77 3.6508 (16) 158
C7—H7A⋯Cl1i 0.93 2.81 3.6933 (15) 158
C11—H11A⋯O1ii 0.93 2.58 3.423 (2) 151
C4—H4ACg1iii 0.93 2.83 3.5443 (19) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y-1, z-{\script{1\over 2}}]. Cg1 is the centroid of the C8–C13 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

We have been interested in syntheses of Schiff base ligands containing oxygen and imine nitrogen atoms and their metal complexes due to their variety of applications. Manganese complexes with Schiff base ligands have numerous applications in chemistry, biology, physics and advanced materials and are used in catalysis (Dixit and Srinivasan, 1988), as models for the oxygen-evolving complex of photosystem II (Glatzel et al., 2004), and as single-molecule magnets (Lu et al., 2006). They also serve as models for the active sites of manganese-containing metal enzymes (Stallings et al., 1985). Recently, we reported the crystal structure of a five coordinate MnIII complex with a similar N2O2 donor Schiff base ligand, chlorido{6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidene)]diphenolato- κ4O,N,N',O'}manganese(III) monohydrate (Eltayeb et al., 2008). We report here the structure of (I), Fig. 1, a MnIII complex of a closely-related ligand.

In (I) the MnIII center is in a slightly distorted square-pyramidal geometry coordinating through N1, N2, O1 and O2 atoms of the tetradentate Schiff base ligand in the basal plane with the two phenolic O atoms and two imine N atoms in mutually cis positions. The apical position is coordinated by the Cl- ion. The Mn—O distances [Mn1—O1 = 1.8698 (12)Å, Mn1—O2 = 1.8983 (10)Å] and Mn—N distances [Mn1—N1 = 1.9923 (12)Å, Mn1—N2 = 1.9875 (12)Å] are in the same ranges of those observed in other related MnIII complexes of N2O2 Schiff base ligands (Eltayeb et al., 2008; Habibi et al., 2007; Mitra et al., 2006). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). The basal bond angles O1–Mn1–O2 of 92.61 (4)°, O–Mn–N [O1–Mn1–N1 = 93.07 (5)°, O2–Mn1–N2 = 89.21 (5)°] are close to 90° whereas the N–Mn–N is smaller than 90° [N1–Mn1–N2 = 82.10 (5)°]. The bond angles between the Cl- ion and the atoms in the basal plane are in the range 93.14 (4) to 99.97 (4)°, indicating a distorted square-pyramidal geometry. Coordination of the the N2O2 chelate ligand to the MnIII ion results in the formation of an essentialy planar five-membered ring (Mn1/N1/N2/C8/C13) and two six-membered rings; the Mn1/O1/N1/C1/C6/C7 ring is almost planar with the greatest deviation being 0.059 (1)Å for atom O2 whereas the Mn1/O2/N2/C14/C15/C20 ring adopts an envelope conformation with atom O2 displaced from the Mn1/N2/C14/C15/C20 plane by 0.298 (1)Å and with Cremer & Pople (1975) puckering parameters Q = 0.483 (1)°, θ = 61.0 (1)° and ϕ = 18.8 (2)°. These parameters are larger in values than those observed in the closely-related structure (Eltayeb et al., 2008). The dihedral angle between the two outer phenolate rings [C1–C6 and C15–C20] of the Schiff base ligand is 18.24 (9)°. The central benzene ring (C8–C13) makes dihedral angles of 13.71 (8)° and 30.50 (8)° with the two outer phenolate rings. These dihedral angles are all wider than the corresponding angles found in a closely related structure (Eltayeb et al., 2008) due to the different locations of the two methyl substituents on the phenolate rings of the Schiff base ligand.

In the crystal packing (Fig. 2), weak C—H···Cl interactions (Table 1) link the molecules into screw helices along the b direction. These helices are further connected by weak C—H···O interactions into a three-dimensional network. The crystal is further stabilized by weak C—H···π interactions (Table 1); Cg1 is the centroid of the C8–C13 benzene ring.

Related literature top

For values of bond lengths, see: Allen et al. (1987). For details of ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Eltayeb et al. (2008); Habibi et al. (2007); Mitra et al. (2006). For background to applications of manganese complexes, see, for example: Dixit & Srinivasan (1988); Glatzel et al. (2004); Lu et al. (2006); Stallings et al. (1985).

Experimental top

The title compound was synthesized by adding 2-hydroxy-4-methylbenzaldehyde (0.546 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (30 ml). The mixture was refluxed with stirring for half an hour. Manganese chloride tetrahydrate (0.394 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for three hours. A brown precipitate was obtained, washed with about 5 ml ethanol, dried, and then washed with copious quantities of diethylether. Brown single crystals of the title compound suitable for x-ray structure determination were recrystallized from ethanol/methanol (2:1 v/v) by slow evaporation of the solvent at room temperature over two months.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.81 Å from Cl1 and the deepest hole is located at 0.67 Å from Mn1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis, showing the three-dimensional network. C—H···Cl weak interactions are drawn as dashed lines.
Chlorido{5,5'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III) top
Crystal data top
[Mn(C22H18N2O2)Cl]F(000) = 1776
Mr = 432.77Dx = 1.555 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8109 reflections
a = 20.9593 (5) Åθ = 2.1–35.0°
b = 13.5897 (3) ŵ = 0.88 mm1
c = 14.9316 (3) ÅT = 100 K
β = 119.641 (1)°Block, brown
V = 3696.43 (14) Å30.56 × 0.20 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8109 independent reflections
Radiation source: fine-focus sealed tube5992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.33 pixels mm-1θmax = 35.0°, θmin = 2.1°
ω scansh = 3328
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2121
Tmin = 0.639, Tmax = 0.852l = 2324
35769 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.3131P]
where P = (Fo2 + 2Fc2)/3
8109 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Mn(C22H18N2O2)Cl]V = 3696.43 (14) Å3
Mr = 432.77Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.9593 (5) ŵ = 0.88 mm1
b = 13.5897 (3) ÅT = 100 K
c = 14.9316 (3) Å0.56 × 0.20 × 0.19 mm
β = 119.641 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5992 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.852Rint = 0.048
35769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.75 e Å3
8109 reflectionsΔρmin = 0.69 e Å3
255 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.225261 (11)0.228215 (15)0.091917 (16)0.01606 (6)
Cl10.16386 (2)0.29835 (3)0.17860 (3)0.02432 (9)
O10.14852 (6)0.14593 (7)0.00249 (8)0.0192 (2)
O20.19870 (6)0.32753 (7)0.00984 (8)0.0185 (2)
N10.27984 (6)0.11876 (9)0.18852 (9)0.0168 (2)
N20.31816 (6)0.30016 (9)0.18058 (9)0.0167 (2)
C10.13609 (8)0.05345 (10)0.01522 (11)0.0174 (3)
C20.07011 (8)0.00997 (11)0.05872 (12)0.0219 (3)
H2A0.03650.04810.11360.026*
C30.05302 (8)0.08722 (11)0.05333 (12)0.0209 (3)
C40.10445 (9)0.14629 (12)0.02727 (12)0.0226 (3)
H4A0.09410.21210.03140.027*
C50.17011 (8)0.10657 (11)0.10001 (11)0.0209 (3)
H5A0.20430.14680.15200.025*
C60.18698 (8)0.00631 (10)0.09789 (10)0.0168 (2)
C70.25658 (8)0.02818 (11)0.17669 (10)0.0173 (2)
H7A0.28810.01800.22370.021*
C80.35313 (7)0.14389 (11)0.26289 (10)0.0177 (3)
C90.40356 (8)0.08078 (12)0.33913 (12)0.0233 (3)
H9A0.38890.01900.34890.028*
C100.47580 (8)0.11154 (13)0.40001 (12)0.0263 (3)
H10A0.50940.07010.45120.032*
C110.49860 (8)0.20291 (13)0.38569 (12)0.0258 (3)
H11A0.54750.22150.42510.031*
C120.44804 (8)0.26669 (12)0.31221 (12)0.0229 (3)
H12A0.46310.32820.30240.027*
C130.37498 (8)0.23870 (11)0.25325 (11)0.0174 (3)
C140.32367 (8)0.39542 (11)0.17937 (11)0.0193 (3)
H14A0.36690.42420.22970.023*
C150.26777 (8)0.45912 (10)0.10593 (11)0.0179 (3)
C160.27519 (9)0.56198 (11)0.12163 (12)0.0216 (3)
H16A0.31500.58670.18110.026*
C170.22469 (9)0.62645 (11)0.05081 (12)0.0235 (3)
H17A0.23060.69380.06300.028*
C180.16426 (9)0.59053 (11)0.03985 (12)0.0216 (3)
C190.15624 (8)0.48953 (11)0.05583 (11)0.0196 (3)
H19A0.11590.46570.11520.024*
C200.20661 (8)0.42298 (10)0.01426 (11)0.0176 (3)
C210.01947 (9)0.12957 (13)0.13236 (15)0.0305 (4)
H21A0.04430.08350.18780.046*
H21B0.04910.14230.10110.046*
H21C0.01140.18990.15870.046*
C220.10955 (10)0.65886 (13)0.12034 (14)0.0305 (4)
H22A0.10320.64140.18660.046*
H22B0.12710.72530.10400.046*
H22C0.06340.65350.12180.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01366 (10)0.01200 (11)0.01705 (10)0.00147 (7)0.00341 (7)0.00028 (7)
Cl10.02102 (17)0.02319 (18)0.02899 (18)0.00435 (13)0.01255 (14)0.00675 (13)
O10.0161 (5)0.0125 (4)0.0212 (5)0.0013 (4)0.0033 (4)0.0006 (3)
O20.0210 (5)0.0112 (4)0.0180 (4)0.0003 (4)0.0057 (4)0.0002 (3)
N10.0142 (5)0.0162 (5)0.0164 (5)0.0010 (4)0.0049 (4)0.0001 (4)
N20.0142 (5)0.0148 (5)0.0183 (5)0.0012 (4)0.0058 (4)0.0014 (4)
C10.0150 (6)0.0136 (6)0.0218 (6)0.0009 (5)0.0077 (5)0.0011 (5)
C20.0139 (6)0.0168 (7)0.0271 (7)0.0012 (5)0.0041 (5)0.0017 (5)
C30.0149 (6)0.0174 (7)0.0280 (7)0.0028 (5)0.0087 (5)0.0033 (5)
C40.0251 (7)0.0174 (7)0.0250 (7)0.0053 (6)0.0121 (6)0.0018 (5)
C50.0231 (7)0.0147 (6)0.0214 (6)0.0012 (5)0.0084 (5)0.0013 (5)
C60.0153 (6)0.0146 (6)0.0188 (6)0.0016 (5)0.0070 (5)0.0000 (4)
C70.0175 (6)0.0154 (6)0.0170 (5)0.0002 (5)0.0070 (5)0.0012 (4)
C80.0133 (6)0.0181 (6)0.0180 (6)0.0000 (5)0.0049 (5)0.0002 (5)
C90.0166 (6)0.0227 (7)0.0230 (6)0.0002 (5)0.0041 (5)0.0039 (5)
C100.0166 (7)0.0282 (8)0.0242 (7)0.0023 (6)0.0025 (5)0.0038 (6)
C110.0142 (6)0.0295 (8)0.0264 (7)0.0010 (6)0.0044 (5)0.0017 (6)
C120.0149 (6)0.0217 (7)0.0272 (7)0.0028 (5)0.0067 (5)0.0032 (5)
C130.0144 (6)0.0171 (6)0.0178 (6)0.0011 (5)0.0057 (5)0.0022 (5)
C140.0181 (6)0.0172 (6)0.0205 (6)0.0037 (5)0.0080 (5)0.0031 (5)
C150.0171 (6)0.0129 (6)0.0223 (6)0.0023 (5)0.0087 (5)0.0011 (5)
C160.0233 (7)0.0155 (6)0.0253 (7)0.0033 (5)0.0115 (6)0.0026 (5)
C170.0280 (8)0.0132 (6)0.0308 (7)0.0001 (5)0.0158 (6)0.0011 (5)
C180.0250 (7)0.0171 (7)0.0247 (7)0.0029 (5)0.0139 (6)0.0022 (5)
C190.0210 (7)0.0163 (6)0.0212 (6)0.0012 (5)0.0102 (5)0.0003 (5)
C200.0191 (6)0.0138 (6)0.0201 (6)0.0016 (5)0.0097 (5)0.0006 (5)
C210.0176 (7)0.0219 (8)0.0417 (9)0.0054 (6)0.0068 (6)0.0063 (7)
C220.0371 (9)0.0193 (7)0.0317 (8)0.0082 (7)0.0143 (7)0.0026 (6)
Geometric parameters (Å, º) top
Mn1—O11.8698 (10)C9—H9A0.9300
Mn1—O21.8983 (10)C10—C111.385 (2)
Mn1—N21.9875 (12)C10—H10A0.9300
Mn1—N11.9923 (12)C11—C121.388 (2)
Mn1—Cl12.4263 (4)C11—H11A0.9300
O1—C11.3162 (17)C12—C131.390 (2)
O2—C201.3344 (17)C12—H12A0.9300
N1—C71.3034 (18)C14—C151.433 (2)
N1—C81.4221 (17)C14—H14A0.9300
N2—C141.3006 (19)C15—C161.413 (2)
N2—C131.4195 (18)C15—C201.4221 (19)
C1—C21.4036 (19)C16—C171.378 (2)
C1—C61.4208 (19)C16—H16A0.9300
C2—C31.381 (2)C17—C181.407 (2)
C2—H2A0.9300C17—H17A0.9300
C3—C41.404 (2)C18—C191.389 (2)
C3—C211.503 (2)C18—C221.503 (2)
C4—C51.373 (2)C19—C201.391 (2)
C4—H4A0.9300C19—H19A0.9300
C5—C61.412 (2)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C6—C71.4263 (19)C21—H21C0.9600
C7—H7A0.9300C22—H22A0.9600
C8—C131.398 (2)C22—H22B0.9600
C8—C91.399 (2)C22—H22C0.9600
C9—C101.390 (2)
O1—Mn1—O292.61 (4)C11—C10—C9121.08 (14)
O1—Mn1—N2169.49 (5)C11—C10—H10A119.5
O2—Mn1—N289.21 (5)C9—C10—H10A119.5
O1—Mn1—N193.07 (5)C10—C11—C12119.67 (14)
O2—Mn1—N1161.15 (5)C10—C11—H11A120.2
N2—Mn1—N182.10 (5)C12—C11—H11A120.2
O1—Mn1—Cl196.89 (4)C11—C12—C13120.06 (15)
O2—Mn1—Cl197.16 (4)C11—C12—H12A120.0
N2—Mn1—Cl193.14 (4)C13—C12—H12A120.0
N1—Mn1—Cl199.97 (4)C12—C13—C8120.09 (13)
C1—O1—Mn1129.03 (9)C12—C13—N2124.62 (14)
C20—O2—Mn1121.82 (9)C8—C13—N2115.29 (12)
C7—N1—C8121.32 (12)N2—C14—C15124.56 (13)
C7—N1—Mn1124.38 (10)N2—C14—H14A117.7
C8—N1—Mn1113.44 (9)C15—C14—H14A117.7
C14—N2—C13123.34 (12)C16—C15—C20118.30 (13)
C14—N2—Mn1123.02 (10)C16—C15—C14119.30 (13)
C13—N2—Mn1113.25 (9)C20—C15—C14122.31 (13)
O1—C1—C2118.48 (13)C17—C16—C15121.46 (14)
O1—C1—C6123.65 (12)C17—C16—H16A119.3
C2—C1—C6117.84 (13)C15—C16—H16A119.3
C3—C2—C1122.67 (14)C16—C17—C18120.13 (14)
C3—C2—H2A118.7C16—C17—H17A119.9
C1—C2—H2A118.7C18—C17—H17A119.9
C2—C3—C4119.04 (13)C19—C18—C17118.89 (14)
C2—C3—C21120.74 (14)C19—C18—C22119.57 (14)
C4—C3—C21120.23 (14)C17—C18—C22121.52 (14)
C5—C4—C3119.82 (14)C18—C19—C20122.06 (14)
C5—C4—H4A120.1C18—C19—H19A119.0
C3—C4—H4A120.1C20—C19—H19A119.0
C4—C5—C6121.72 (14)O2—C20—C19118.83 (13)
C4—C5—H5A119.1O2—C20—C15121.86 (13)
C6—C5—H5A119.1C19—C20—C15119.15 (13)
C5—C6—C1118.84 (12)C3—C21—H21A109.5
C5—C6—C7117.65 (13)C3—C21—H21B109.5
C1—C6—C7123.43 (13)H21A—C21—H21B109.5
N1—C7—C6125.70 (13)C3—C21—H21C109.5
N1—C7—H7A117.2H21A—C21—H21C109.5
C6—C7—H7A117.2H21B—C21—H21C109.5
C13—C8—C9119.63 (13)C18—C22—H22A109.5
C13—C8—N1115.03 (12)C18—C22—H22B109.5
C9—C8—N1125.29 (13)H22A—C22—H22B109.5
C10—C9—C8119.20 (15)C18—C22—H22C109.5
C10—C9—H9A120.4H22A—C22—H22C109.5
C8—C9—H9A120.4H22B—C22—H22C109.5
O2—Mn1—O1—C1170.43 (13)C5—C6—C7—N1177.31 (15)
N2—Mn1—O1—C170.7 (3)C1—C6—C7—N16.2 (2)
N1—Mn1—O1—C18.41 (13)C7—N1—C8—C13167.53 (14)
Cl1—Mn1—O1—C192.03 (12)Mn1—N1—C8—C132.25 (16)
O1—Mn1—O2—C20145.34 (11)C7—N1—C8—C99.7 (2)
N2—Mn1—O2—C2045.01 (11)Mn1—N1—C8—C9179.47 (13)
N1—Mn1—O2—C20107.23 (17)C13—C8—C9—C103.8 (2)
Cl1—Mn1—O2—C2048.06 (11)N1—C8—C9—C10173.30 (15)
O1—Mn1—N1—C71.63 (13)C8—C9—C10—C110.6 (3)
O2—Mn1—N1—C7108.98 (16)C9—C10—C11—C122.6 (3)
N2—Mn1—N1—C7172.25 (13)C10—C11—C12—C130.1 (3)
Cl1—Mn1—N1—C795.93 (12)C11—C12—C13—C84.3 (2)
O1—Mn1—N1—C8167.79 (10)C11—C12—C13—N2176.11 (15)
O2—Mn1—N1—C860.44 (19)C9—C8—C13—C126.3 (2)
N2—Mn1—N1—C82.83 (10)N1—C8—C13—C12171.13 (14)
Cl1—Mn1—N1—C894.65 (10)C9—C8—C13—N2174.11 (13)
O1—Mn1—N2—C14131.1 (2)N1—C8—C13—N28.51 (19)
O2—Mn1—N2—C1431.04 (12)C14—N2—C13—C1218.1 (2)
N1—Mn1—N2—C14165.73 (13)Mn1—N2—C13—C12168.88 (13)
Cl1—Mn1—N2—C1466.09 (12)C14—N2—C13—C8162.28 (14)
O1—Mn1—N2—C1355.8 (3)Mn1—N2—C13—C810.73 (16)
O2—Mn1—N2—C13155.92 (10)C13—N2—C14—C15178.88 (14)
N1—Mn1—N2—C137.31 (10)Mn1—N2—C14—C158.8 (2)
Cl1—Mn1—N2—C13106.95 (10)N2—C14—C15—C16170.29 (15)
Mn1—O1—C1—C2173.26 (11)N2—C14—C15—C2013.2 (2)
Mn1—O1—C1—C69.1 (2)C20—C15—C16—C170.3 (2)
O1—C1—C2—C3178.35 (15)C14—C15—C16—C17176.93 (15)
C6—C1—C2—C30.6 (2)C15—C16—C17—C180.3 (2)
C1—C2—C3—C42.1 (2)C16—C17—C18—C190.6 (2)
C1—C2—C3—C21177.86 (16)C16—C17—C18—C22177.92 (16)
C2—C3—C4—C51.0 (2)C17—C18—C19—C200.9 (2)
C21—C3—C4—C5179.03 (16)C22—C18—C19—C20177.67 (15)
C3—C4—C5—C61.7 (2)Mn1—O2—C20—C19146.85 (11)
C4—C5—C6—C13.3 (2)Mn1—O2—C20—C1537.70 (18)
C4—C5—C6—C7179.96 (15)C18—C19—C20—O2174.69 (14)
O1—C1—C6—C5175.56 (14)C18—C19—C20—C150.9 (2)
C2—C1—C6—C52.1 (2)C16—C15—C20—O2174.89 (14)
O1—C1—C6—C70.9 (2)C14—C15—C20—O21.6 (2)
C2—C1—C6—C7178.55 (14)C16—C15—C20—C190.6 (2)
C8—N1—C7—C6173.22 (14)C14—C15—C20—C19177.07 (14)
Mn1—N1—C7—C64.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1i0.932.773.6508 (16)158
C7—H7A···Cl1i0.932.813.6933 (15)158
C11—H11A···O1ii0.932.583.423 (2)151
C4—H4A···Cg1iii0.932.833.5443 (19)135
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C22H18N2O2)Cl]
Mr432.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.9593 (5), 13.5897 (3), 14.9316 (3)
β (°) 119.641 (1)
V3)3696.43 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.56 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.639, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
35769, 8109, 5992
Rint0.048
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.07
No. of reflections8109
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.69

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cl1i0.932.77053.6508 (16)158
C7—H7A···Cl1i0.932.81393.6933 (15)158
C11—H11A···O1ii0.932.57763.423 (2)151
C4—H4A···Cg1iii0.932.82923.5443 (19)135
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z1/2.
 

Footnotes

On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, Ministry of Science, Technology and Innovation (MOSTI), and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDixit, P. S. & Srinivasan, K. (1988). Inorg. Chem. 27, 4507–4509.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc. 126, 9946–9959.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem. 45, 3538–3548.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem. 260, 16424–16432.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m570-m571
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds