organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­droxy­benzyl­­idene)-4-meth­oxy­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@163.com

(Received 19 March 2008; accepted 25 March 2008; online 29 March 2008)

The title Schiff base compound, C15H14N2O3, was derived from the condensation reaction of salicylaldehyde with 4-methoxy­benzohydrazide. The dihedral angle between the two benzene rings is 2.5 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For related structures, see: Tang (2006[Tang, C.-B. (2006). Acta Cryst. E62, m2629-m2630.], 2007a[Tang, C.-B. (2007a). Acta Cryst. E63, m2654.],b[Tang, C.-B. (2007b). Acta Cryst. E63, m2785-m2786.],c[Tang, C.-B. (2007c). Acta Cryst. E63, o4545.],d[Tang, C.-B. (2007d). Acta Cryst. E63, o4841.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Monoclinic, P 21 /c

  • a = 16.283 (4) Å

  • b = 5.1876 (12) Å

  • c = 16.303 (4) Å

  • β = 108.093 (2)°

  • V = 1309.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.984

  • 7166 measured reflections

  • 2862 independent reflections

  • 2288 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.03

  • 2862 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 2.18 3.0112 (15) 153
O1—H1⋯N1 0.82 1.90 2.6171 (14) 146
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the author has reported the structures of several Schiff base compounds (Tang, 2006, 2007a,b,c,d) and, in continuation of work in this area, reports herein the structure of the title compound, (I), Fig. 1, a new Schiff base compound.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 2.5 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, and N1—N2—C8—C9 are 1.3 (2), 11.4 (2), and 0.6 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through N—H···O intermolecular hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Related literature top

For related structures, see: Tang (2006, 2007a,b,c,d). For reference structural data, see: Allen et al. (1987).

Experimental top

Salicylaldehyde (0.1 mmol, 12.2 mg) and 4-methoxybenzohydrazide (0.1 mmol, 16.6 mg) were dissolved in an ethanol solution (20 ml). The mixture was stirred at reflux for 10 min to give a clear colorless solution. Colorless needle-like crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N), 1.5Ueq(C15 and O1).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds drawn as dashed lines.
N'-(2-Hydroxybenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2841 reflections
a = 16.283 (4) Åθ = 2.5–28.4°
b = 5.1876 (12) ŵ = 0.10 mm1
c = 16.303 (4) ÅT = 298 K
β = 108.093 (2)°Cut from a needle, colorless
V = 1309.0 (5) Å30.23 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2862 independent reflections
Radiation source: fine-focus sealed tube2288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2017
Tmin = 0.978, Tmax = 0.984k = 65
7166 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1695P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2862 reflectionsΔρmax = 0.19 e Å3
183 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (19)
Crystal data top
C15H14N2O3V = 1309.0 (5) Å3
Mr = 270.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.283 (4) ŵ = 0.10 mm1
b = 5.1876 (12) ÅT = 298 K
c = 16.303 (4) Å0.23 × 0.20 × 0.17 mm
β = 108.093 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2862 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2288 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.024
7166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2862 reflectionsΔρmin = 0.14 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28687 (6)0.79939 (18)0.04446 (6)0.0589 (3)
H10.24150.81680.05580.071*
O20.07668 (6)0.61484 (17)0.09720 (6)0.0513 (3)
O30.28125 (6)0.8712 (2)0.15298 (7)0.0603 (3)
N10.18099 (6)1.0151 (2)0.11628 (7)0.0458 (3)
N20.09898 (6)1.0412 (2)0.12266 (7)0.0458 (3)
H20.07861.20250.12390.055*
C10.32018 (7)1.1824 (2)0.13304 (8)0.0418 (3)
C20.34309 (8)0.9849 (2)0.08499 (8)0.0447 (3)
C30.42580 (9)0.9783 (3)0.07764 (9)0.0539 (3)
H30.44070.84970.04510.065*
C40.48579 (9)1.1612 (3)0.11825 (9)0.0564 (4)
H4A0.54101.15480.11290.068*
C50.46509 (9)1.3546 (3)0.16693 (9)0.0559 (4)
H50.50631.47580.19500.067*
C60.38275 (8)1.3652 (3)0.17323 (8)0.0497 (3)
H60.36851.49720.20500.060*
C70.23383 (8)1.2025 (2)0.14075 (8)0.0448 (3)
H70.21721.35100.16340.054*
C80.04904 (7)0.8257 (2)0.11109 (7)0.0393 (3)
C90.03888 (7)0.8543 (2)0.11895 (7)0.0376 (3)
C100.06242 (8)1.0470 (2)0.16743 (8)0.0439 (3)
H100.02321.17630.19290.053*
C110.14321 (8)1.0465 (2)0.17758 (8)0.0475 (3)
H110.15801.17380.21060.057*
C120.20273 (8)0.8575 (2)0.13885 (8)0.0438 (3)
C130.18097 (8)0.6676 (2)0.08943 (8)0.0465 (3)
H130.22090.54170.06260.056*
C140.09942 (8)0.6672 (2)0.08042 (8)0.0436 (3)
H140.08470.53860.04780.052*
C150.33848 (9)0.6588 (3)0.12432 (11)0.0682 (4)
H15A0.35310.64300.06280.102*
H15B0.39010.68690.13970.102*
H15C0.31080.50340.15110.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0530 (6)0.0498 (6)0.0720 (6)0.0030 (4)0.0166 (5)0.0180 (5)
O20.0492 (5)0.0387 (5)0.0677 (6)0.0032 (4)0.0206 (4)0.0064 (4)
O30.0521 (6)0.0612 (6)0.0769 (7)0.0039 (5)0.0339 (5)0.0048 (5)
N10.0397 (5)0.0411 (6)0.0572 (6)0.0003 (4)0.0159 (5)0.0006 (5)
N20.0392 (5)0.0368 (6)0.0628 (7)0.0017 (4)0.0180 (5)0.0017 (5)
C10.0423 (6)0.0367 (6)0.0455 (6)0.0002 (5)0.0123 (5)0.0029 (5)
C20.0471 (7)0.0398 (7)0.0455 (7)0.0003 (5)0.0118 (5)0.0016 (5)
C30.0568 (8)0.0536 (8)0.0565 (8)0.0054 (6)0.0250 (6)0.0013 (6)
C40.0476 (7)0.0623 (9)0.0647 (8)0.0017 (6)0.0253 (6)0.0080 (7)
C50.0494 (7)0.0522 (8)0.0650 (8)0.0130 (6)0.0163 (6)0.0007 (7)
C60.0505 (7)0.0422 (7)0.0561 (8)0.0051 (6)0.0163 (6)0.0040 (6)
C70.0451 (7)0.0390 (7)0.0499 (7)0.0019 (5)0.0141 (5)0.0020 (5)
C80.0421 (6)0.0361 (6)0.0382 (6)0.0018 (5)0.0102 (5)0.0005 (5)
C90.0418 (6)0.0334 (6)0.0368 (6)0.0006 (5)0.0111 (5)0.0014 (4)
C100.0487 (7)0.0356 (6)0.0466 (7)0.0034 (5)0.0134 (5)0.0069 (5)
C110.0556 (7)0.0409 (7)0.0505 (7)0.0012 (6)0.0229 (6)0.0074 (5)
C120.0444 (6)0.0449 (7)0.0455 (6)0.0015 (5)0.0187 (5)0.0046 (5)
C130.0456 (7)0.0434 (7)0.0494 (7)0.0079 (5)0.0131 (5)0.0063 (5)
C140.0490 (7)0.0380 (7)0.0451 (6)0.0019 (5)0.0165 (5)0.0068 (5)
C150.0492 (8)0.0726 (11)0.0883 (11)0.0098 (7)0.0293 (8)0.0025 (8)
Geometric parameters (Å, º) top
O1—C21.3509 (15)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—C81.2303 (14)C7—H70.9300
O3—C121.3695 (14)C8—C91.4839 (16)
O3—C151.4248 (17)C9—C141.3870 (16)
N1—C71.2773 (16)C9—C101.3997 (16)
N1—N21.3780 (14)C10—C111.3759 (17)
N2—C81.3604 (15)C10—H100.9300
N2—H20.9000C11—C121.3854 (17)
C1—C61.3974 (17)C11—H110.9300
C1—C21.4085 (17)C12—C131.3864 (17)
C1—C71.4538 (16)C13—C141.3805 (17)
C2—C31.3891 (17)C13—H130.9300
C3—C41.3750 (19)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.384 (2)C15—H15B0.9600
C4—H4A0.9300C15—H15C0.9600
C5—C61.3772 (18)
C2—O1—H1109.4O2—C8—N2121.27 (11)
C12—O3—C15117.01 (11)O2—C8—C9121.51 (10)
C7—N1—N2118.44 (11)N2—C8—C9117.19 (10)
C8—N2—N1117.41 (10)C14—C9—C10118.34 (11)
C8—N2—H2123.9C14—C9—C8117.39 (10)
N1—N2—H2117.6C10—C9—C8124.13 (10)
C6—C1—C2118.30 (11)C11—C10—C9120.40 (11)
C6—C1—C7119.64 (11)C11—C10—H10119.8
C2—C1—C7122.06 (11)C9—C10—H10119.8
O1—C2—C3117.92 (11)C10—C11—C12120.42 (11)
O1—C2—C1122.26 (11)C10—C11—H11119.8
C3—C2—C1119.82 (12)C12—C11—H11119.8
C4—C3—C2120.29 (13)O3—C12—C11116.36 (11)
C4—C3—H3119.9O3—C12—C13123.72 (11)
C2—C3—H3119.9C11—C12—C13119.92 (11)
C3—C4—C5120.86 (12)C14—C13—C12119.39 (11)
C3—C4—H4A119.6C14—C13—H13120.3
C5—C4—H4A119.6C12—C13—H13120.3
C6—C5—C4119.20 (12)C13—C14—C9121.52 (11)
C6—C5—H5120.4C13—C14—H14119.2
C4—C5—H5120.4C9—C14—H14119.2
C5—C6—C1121.51 (12)O3—C15—H15A109.5
C5—C6—H6119.2O3—C15—H15B109.5
C1—C6—H6119.2H15A—C15—H15B109.5
N1—C7—C1119.60 (11)O3—C15—H15C109.5
N1—C7—H7120.2H15A—C15—H15C109.5
C1—C7—H7120.2H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.902.183.0112 (15)153
O1—H1···N10.821.902.6171 (14)146
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.283 (4), 5.1876 (12), 16.303 (4)
β (°) 108.093 (2)
V3)1309.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7166, 2862, 2288
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.03
No. of reflections2862
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.902.183.0112 (15)152.6
O1—H1···N10.821.902.6171 (14)145.7
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial support from the Jiaying University Research Fund is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2006). Acta Cryst. E62, m2629–m2630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007a). Acta Cryst. E63, m2654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007b). Acta Cryst. E63, m2785–m2786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007c). Acta Cryst. E63, o4545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2007d). Acta Cryst. E63, o4841.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds