metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m597-m598

Bis{2-[2-(iso­propyl­ammonio)ethyl­imino­meth­yl]-6-meth­oxy­phenolato}nickel(II) di­thio­cyanate

aDepartment of Nutrition, Jilin Medical College, Jilin 132013, People's Republic of China, bDepartment of Biochemistry, Jilin Medical College, Jilin 132013, People's Republic of China, and cDepartment of Pharmacopedics, Jilin Medical College, Jilin 132013, People's Republic of China
*Correspondence e-mail: jlcpcxb@yahoo.com.cn

(Received 20 March 2008; accepted 25 March 2008; online 29 March 2008)

The title complex, [Ni(C13H20N2O2)2](NCS)2, consists of a centrosymmetric mononuclear four-coordinate nickel(II) complex cation and two thio­cyanate anions. The Ni atom is located on an inversion center and is coordinated by two phenol O atoms and two imine N atoms from two equivalent Schiff base ligands, in a square-planar geometry. In the crystal structure, the amino H atoms are involved in N—H⋯O hydrogen bonds with the phenol and meth­oxy O atoms of the ligand, and in N—H⋯N hydrogen bonds with the N atoms of the thio­cyanate anions, which sit above and below the Ni atom.

Related literature

For background on the chemistry of Schiff base nickel(II) complexes, see: Marganian et al. (1995[Marganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc. 117, 1584-1594.]). For their biological activity, see: Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For thio­cyanate-coordinated complexes, see: Bogdanović et al. (2005[Bogdanović, G. A., Jaćimović, Z. K. & Leovac, V. M. (2005). Acta Cryst. C61, m376-m379.]); Schottenfeld et al. (2007[Schottenfeld, J., Rarig, R. S., Zubieta, J. & LaDuca, R. L. (2007). Acta Cryst. E63, m278-m280.]); Abul-Haj et al. (2000[Abul-Haj, M., Quirós, M. & Salas, J. M. (2000). Acta Cryst. C56, 934-935.]). For related structures, see: Arıcı et al. (2005[Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.]); Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Wang, Y.-Z., Wang, M.-D. & Li, K. (2007). Acta Cryst. E63, m2494.]); Zhu et al. (2004[Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634-m636.]); Van Hecke et al. (2007[Van Hecke, K., Nockemann, P., Binnemans, K. & Van Meervelt, L. (2007). Acta Cryst. E63, m569-m571.]); de Castro et al. (2001[Castro, B. de, Freire, C., Duarte, M. T., Minas da Piedade, M. F. & Santos, I. C. (2001). Acta Cryst. C57, 370-372.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H20N2O2)2](NCS)2

  • Mr = 647.49

  • Orthorhombic, P b c a

  • a = 13.520 (2) Å

  • b = 9.810 (3) Å

  • c = 24.102 (3) Å

  • V = 3196.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 298 (2) K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.841, Tmax = 0.860

  • 24542 measured reflections

  • 3863 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.175

  • S = 1.01

  • 3863 reflections

  • 190 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.90 2.34 3.068 (5) 138
N2—H2B⋯O1i 0.90 1.88 2.664 (4) 145
N2—H2A⋯N3 0.90 2.13 2.983 (6) 158
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel(II) complexes derived from Schiff bases have been widely studied (Marganian et al., 1995). Some of them have been found to have pharmacological and antitumor properties (Harrop et al., 2003; Brückner et al., 2000; Ren et al., 2002). The thiocyanate ligand displays a number of coordination modes and has become one of the most extensively studied building blocks in the synthesis of complexes (Bogdanović et al., 2005; Schottenfeld et al., 2007; Abul-Haj et al., 2000), however, the thiocyanate group acting as a counterion in complexes has seldom been reported. We report herein the crystal structure of the title nickel(II) complex (I).

Complex (I) consists of a centrosymmetric mononuclear four-coordinated nickel(II) complex molecule and two thiocyanate anions (Fig. 1). The Ni atom is located on an inversion center and coordinated, by two phenolic O atoms and two imine N atoms from two equivalent Schiff base ligands, in a square planar geometry. The thiocyanate anions act as counterions and are not coordinate to the nickel(II) atom (Fig. 1). All the coordinate bond values are similar to those observed in other Schiff base nickel(II) complexes (Arıcı et al., 2005; Diao, 2007; Diao et al., 2007; Zhu et al., 2004; Van Hecke et al., 2007; de Castro et al., 2001).

In the crystal structure of (I) the amino H-atoms are involved in N-H···O hydrogen bonds with the phenolic and methoxy O atoms of the ligand, and in N-H···N hydrogen bonds with the N-atom of the thiocyanate anions, which sit above and below the nickel atom (Table 1).

Related literature top

For background on the chemistry of Schiff base nickel(II) complexes, see: Marganian et al. (1995). For their biological activity, see: Harrop et al. (2003); Brückner et al. (2000); Ren et al. (2002). For thiocyanate coordinated complexes, see: Bogdanović et al. (2005); Schottenfeld et al. (2007); Abul-Haj et al. (2000). For related structures, see: Arıcı et al. (2005); Diao (2007); Diao et al. (2007); Zhu et al. (2004); Van Hecke et al. (2007); de Castro et al. (2001).

Experimental top

3-Methoxysalicylaldehyde (1.0 mmol, 152.0 mg), N-isopropylethane-1,2-diamine (1.0 mmol, 122.2 mg), ammonium thiocyanate (1.0 mmol, 76.0 mg), and Ni(NO3)2.6H2O (0.5 mmol, 145.0 mg) were dissolved in methanol (50 ml). The mixture was stirred at reflux for 2h to give a reddish solution. After keeping the solution in air for a few days, red block-like crystals were formed.

Refinement top

H atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.90 Å, Uiso = 1.2Ueq(N), and d(C—H) = 0.93 - 0.97 Å, Uiso = 1.2 or 1.5Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), with displacement ellipsoids drawn at the 30% probability level.
Bis{2-[2-(isopropylammonio)ethyliminomethyl]-6-methoxyphenolato}nickel(II) dithiocyanate top
Crystal data top
[Ni(C13H20N2O2)2](NCS)2Dx = 1.345 Mg m3
Mr = 647.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1440 reflections
a = 13.520 (2) Åθ = 2.3–24.6°
b = 9.810 (3) ŵ = 0.78 mm1
c = 24.102 (3) ÅT = 298 K
V = 3196.7 (12) Å3Block, red
Z = 40.23 × 0.22 × 0.20 mm
F(000) = 1368
Data collection top
Bruker SMART CCD area-detector
diffractometer
3863 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.841, Tmax = 0.860k = 1212
24542 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0594P)2 + 2.0547P]
where P = (Fo2 + 2Fc2)/3
3863 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C13H20N2O2)2](NCS)2V = 3196.7 (12) Å3
Mr = 647.49Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.520 (2) ŵ = 0.78 mm1
b = 9.810 (3) ÅT = 298 K
c = 24.102 (3) Å0.23 × 0.22 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1895 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.860Rint = 0.110
24542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0706 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
3863 reflectionsΔρmin = 0.38 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.0503 (3)
O10.0862 (2)0.5589 (3)0.55717 (11)0.0595 (8)
O20.1713 (2)0.7110 (3)0.62919 (13)0.0679 (9)
S10.12952 (16)0.8799 (3)0.34887 (10)0.1446 (9)
N10.1017 (2)0.3634 (3)0.47434 (13)0.0462 (8)
N20.0395 (3)0.4013 (3)0.35925 (13)0.0511 (9)
H2A0.07400.47430.37100.061*
H2B0.01970.40340.37630.061*
N30.1018 (5)0.6596 (5)0.4145 (3)0.123 (2)
C10.1838 (3)0.5537 (4)0.55731 (16)0.0479 (10)
C20.2397 (3)0.4670 (4)0.52411 (17)0.0474 (10)
C30.3429 (3)0.4673 (5)0.5277 (2)0.0566 (12)
H30.37990.40860.50560.068*
C40.3893 (3)0.5529 (5)0.5634 (2)0.0659 (13)
H40.45810.55430.56480.079*
C50.3353 (3)0.6389 (5)0.59804 (19)0.0610 (13)
H50.36780.69670.62260.073*
C60.2337 (3)0.6377 (4)0.59571 (17)0.0523 (11)
C70.2135 (4)0.8054 (5)0.6670 (2)0.0850 (16)
H7A0.25300.75730.69370.127*
H7B0.16170.85400.68570.127*
H7C0.25440.86870.64710.127*
C80.1937 (3)0.3693 (4)0.48742 (15)0.0493 (11)
H80.23490.30400.47170.059*
C90.0744 (3)0.2481 (4)0.43785 (17)0.0553 (11)
H9A0.00500.22670.44330.066*
H9B0.11260.16860.44840.066*
C100.0920 (3)0.2777 (4)0.37715 (17)0.0560 (11)
H10A0.16230.28920.37070.067*
H10B0.06970.20090.35510.067*
C110.0231 (4)0.4150 (5)0.29841 (17)0.0681 (14)
H110.01020.33230.28530.082*
C120.1198 (4)0.4270 (7)0.2686 (2)0.119 (2)
H12A0.15590.50370.28290.178*
H12B0.10800.43970.22970.178*
H12C0.15770.34530.27410.178*
C130.0449 (5)0.5349 (6)0.2881 (2)0.0964 (19)
H13A0.10830.51720.30450.145*
H13B0.05260.54810.24890.145*
H13C0.01690.61550.30430.145*
C140.1096 (5)0.7465 (7)0.3872 (3)0.095 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0405 (4)0.0602 (5)0.0501 (4)0.0056 (4)0.0042 (4)0.0156 (4)
O10.0406 (17)0.084 (2)0.0535 (18)0.0023 (15)0.0001 (14)0.0189 (16)
O20.066 (2)0.069 (2)0.068 (2)0.0026 (17)0.0098 (17)0.0192 (18)
S10.1218 (16)0.166 (2)0.1462 (18)0.0331 (15)0.0288 (14)0.0599 (16)
N10.049 (2)0.049 (2)0.0408 (19)0.0021 (17)0.0034 (16)0.0038 (16)
N20.057 (2)0.052 (2)0.045 (2)0.0072 (18)0.0093 (17)0.0007 (17)
N30.162 (5)0.062 (3)0.147 (5)0.011 (3)0.065 (4)0.008 (3)
C10.046 (3)0.053 (2)0.045 (2)0.002 (2)0.004 (2)0.008 (2)
C20.049 (3)0.050 (3)0.043 (2)0.004 (2)0.001 (2)0.0088 (19)
C30.042 (3)0.067 (3)0.060 (3)0.004 (2)0.002 (2)0.007 (2)
C40.045 (3)0.082 (3)0.071 (3)0.003 (3)0.006 (2)0.014 (3)
C50.061 (3)0.063 (3)0.059 (3)0.015 (2)0.016 (2)0.017 (2)
C60.052 (3)0.052 (3)0.053 (3)0.003 (2)0.005 (2)0.008 (2)
C70.107 (4)0.069 (3)0.079 (4)0.008 (3)0.023 (3)0.013 (3)
C80.054 (3)0.056 (3)0.038 (2)0.011 (2)0.0101 (19)0.0086 (19)
C90.071 (3)0.045 (2)0.051 (3)0.004 (2)0.003 (2)0.001 (2)
C100.070 (3)0.048 (3)0.050 (3)0.012 (2)0.000 (2)0.004 (2)
C110.095 (4)0.065 (3)0.044 (3)0.010 (3)0.001 (3)0.001 (2)
C120.141 (6)0.157 (6)0.058 (4)0.035 (5)0.041 (4)0.028 (4)
C130.137 (5)0.080 (4)0.072 (4)0.032 (4)0.025 (4)0.007 (3)
C140.095 (4)0.075 (4)0.116 (5)0.015 (4)0.039 (4)0.022 (4)
Geometric parameters (Å, º) top
Ni1—O1i1.895 (3)C4—H40.9300
Ni1—O11.895 (3)C5—C61.374 (6)
Ni1—N1i2.017 (3)C5—H50.9300
Ni1—N12.017 (3)C7—H7A0.9600
O1—C11.320 (5)C7—H7B0.9600
O2—C61.371 (5)C7—H7C0.9600
O2—C71.418 (5)C8—H80.9300
S1—C141.624 (8)C9—C101.511 (5)
N1—C81.285 (5)C9—H9A0.9700
N1—C91.479 (5)C9—H9B0.9700
N2—C101.470 (5)C10—H10A0.9700
N2—C111.489 (5)C10—H10B0.9700
N2—H2A0.9000C11—C121.497 (7)
N2—H2B0.9000C11—C131.513 (7)
N3—C141.082 (7)C11—H110.9800
C1—C21.391 (6)C12—H12A0.9600
C1—C61.412 (5)C12—H12B0.9600
C2—C31.399 (6)C12—H12C0.9600
C2—C81.445 (6)C13—H13A0.9600
C3—C41.356 (6)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.393 (6)
O1i—Ni1—O1180.000 (1)O2—C7—H7C109.5
O1i—Ni1—N1i90.38 (13)H7A—C7—H7C109.5
O1—Ni1—N1i89.62 (13)H7B—C7—H7C109.5
O1i—Ni1—N189.62 (13)N1—C8—C2126.7 (4)
O1—Ni1—N190.38 (13)N1—C8—H8116.7
N1i—Ni1—N1180.00 (17)C2—C8—H8116.7
C1—O1—Ni1127.2 (3)N1—C9—C10112.9 (3)
C6—O2—C7118.2 (4)N1—C9—H9A109.0
C8—N1—C9115.0 (4)C10—C9—H9A109.0
C8—N1—Ni1123.7 (3)N1—C9—H9B109.0
C9—N1—Ni1121.4 (3)C10—C9—H9B109.0
C10—N2—C11115.8 (3)H9A—C9—H9B107.8
C10—N2—H2A108.3N2—C10—C9111.5 (3)
C11—N2—H2A108.3N2—C10—H10A109.3
C10—N2—H2B108.3C9—C10—H10A109.3
C11—N2—H2B108.3N2—C10—H10B109.3
H2A—N2—H2B107.4C9—C10—H10B109.3
O1—C1—C2124.4 (4)H10A—C10—H10B108.0
O1—C1—C6117.2 (4)N2—C11—C12110.4 (4)
C2—C1—C6118.3 (4)N2—C11—C13108.8 (4)
C1—C2—C3120.3 (4)C12—C11—C13113.0 (5)
C1—C2—C8121.6 (4)N2—C11—H11108.2
C3—C2—C8118.0 (4)C12—C11—H11108.2
C4—C3—C2120.2 (4)C13—C11—H11108.2
C4—C3—H3119.9C11—C12—H12A109.5
C2—C3—H3119.9C11—C12—H12B109.5
C3—C4—C5120.8 (4)H12A—C12—H12B109.5
C3—C4—H4119.6C11—C12—H12C109.5
C5—C4—H4119.6H12A—C12—H12C109.5
C6—C5—C4119.6 (4)H12B—C12—H12C109.5
C6—C5—H5120.2C11—C13—H13A109.5
C4—C5—H5120.2C11—C13—H13B109.5
O2—C6—C5125.9 (4)H13A—C13—H13B109.5
O2—C6—C1113.4 (4)C11—C13—H13C109.5
C5—C6—C1120.7 (4)H13A—C13—H13C109.5
O2—C7—H7A109.5H13B—C13—H13C109.5
O2—C7—H7B109.5N3—C14—S1175.4 (7)
H7A—C7—H7B109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.343.068 (5)138
N2—H2B···O1i0.901.882.664 (4)145
N2—H2A···N30.902.132.983 (6)158
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C13H20N2O2)2](NCS)2
Mr647.49
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.520 (2), 9.810 (3), 24.102 (3)
V3)3196.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.841, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
24542, 3863, 1895
Rint0.110
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.175, 1.01
No. of reflections3863
No. of parameters190
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.38

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.343.068 (5)137.9
N2—H2B···O1i0.901.882.664 (4)145.2
N2—H2A···N30.902.132.983 (6)157.6
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The project was supported financially by Jilin Medical College.

References

First citationAbul-Haj, M., Quirós, M. & Salas, J. M. (2000). Acta Cryst. C56, 934–935.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBogdanović, G. A., Jaćimović, Z. K. & Leovac, V. M. (2005). Acta Cryst. C61, m376–m379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, B. de, Freire, C., Duarte, M. T., Minas da Piedade, M. F. & Santos, I. C. (2001). Acta Cryst. C57, 370–372.  CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Wang, Y.-Z., Wang, M.-D. & Li, K. (2007). Acta Cryst. E63, m2494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationMarganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc. 117, 1584–1594.  CSD CrossRef CAS Web of Science Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchottenfeld, J., Rarig, R. S., Zubieta, J. & LaDuca, R. L. (2007). Acta Cryst. E63, m278–m280.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Hecke, K., Nockemann, P., Binnemans, K. & Van Meervelt, L. (2007). Acta Cryst. E63, m569–m571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m597-m598
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds