organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,4,5-Tetra­methyl-3,6-di­phenyl-1,2,4,5-tetra­aza-3,6-diphosphinane

aProject AuTEK, Mintek, Private Bag X3015, Randburg 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 25 February 2008; accepted 10 March 2008; online 14 March 2008)

The title compound, C16H22N4P2, crystallizes about a centre of symmetry, leading to a chair conformation of the heterocyclic ring as is commonly found for this type of compound.

Related literature

For related structures, see: Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22N4P2

  • Mr = 332.32

  • Orthorhombic, P b c a

  • a = 13.2879 (16) Å

  • b = 7.5426 (9) Å

  • c = 17.125 (2) Å

  • V = 1716.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 (2) K

  • 0.38 × 0.27 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10040 measured reflections

  • 1873 independent reflections

  • 1591 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.094

  • S = 1.08

  • 1873 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compound (I) has a centre of symmetry and the six-membered ring adopts a chair conformation with the phenyl groups on the phosphorous atoms being trans to each other. Reddy et al. (1994) have observed in related compounds, e.g. [HNP(Et)N(Me)]2 and [HNP(Ph)N(Me)]2, that the chair conformation was favoured over the boat conformation and was seen to readily crystallize. Bond lengths and angles in (I), with values for N—N 1.4321 (17), P—N 1.6953 (14) and 1.6984 (12), and P—Carom 1.8412 (15) Å, are in the ranges observed in related structures (Reddy et al., 1994, 1995).

Related literature top

For related structures, see: Reddy et al. (1994, 1995).

Experimental top

In an attempt to crystallize bis(diphenylphosphino)dimethylhydrazine (II) (for synthesis see Reddy et al., 1995), the worked-up diethylether reaction mixture was concentrated and kept at -20 °C for two days. Two small crystals were formed and on analysis of one of the crystals, (I) was identified. Analysis of the 31P NMR spectrum of (II) showed (I) to be present in less than 5%. Further analysis of (I) was not attempted due to the small amount of material available.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar—H) or 0.96 (CH3) Å, and with Ueq = 1.2 (Ar—H) or 1.5 (CH3) Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for clarity.
1,2,4,5-Tetramethyl-3,6-diphenyl-1,2,4,5-tetraaza-3,6-diphosphinane top
Crystal data top
C16H22N4P2F(000) = 704
Mr = 332.32Dx = 1.286 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 899 reflections
a = 13.2879 (16) Åθ = 3.0–28.2°
b = 7.5426 (9) ŵ = 0.26 mm1
c = 17.125 (2) ÅT = 173 K
V = 1716.4 (4) Å3Plates, colourless
Z = 40.38 × 0.27 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1591 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
ϕ and ω scansh = 1516
10040 measured reflectionsk = 79
1873 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5379P]
where P = (Fo2 + 2Fc2)/3
1873 reflections(Δ/σ)max = 0.005
100 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H22N4P2V = 1716.4 (4) Å3
Mr = 332.32Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.2879 (16) ŵ = 0.26 mm1
b = 7.5426 (9) ÅT = 173 K
c = 17.125 (2) Å0.38 × 0.27 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1591 reflections with I > 2σ(I)
10040 measured reflectionsRint = 0.031
1873 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
1873 reflectionsΔρmin = 0.25 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08579 (13)0.3217 (2)0.05297 (9)0.0359 (4)
H1A0.03640.41220.06240.054*
H1B0.14420.37370.02920.054*
H1C0.10440.26750.10160.054*
C20.17104 (11)0.0731 (2)0.08775 (8)0.0336 (3)
H2A0.21380.02770.09610.050*
H2B0.12720.08780.13190.050*
H2C0.21160.17750.08150.050*
C110.09375 (10)0.14618 (18)0.11718 (8)0.0257 (3)
C120.03662 (11)0.25669 (19)0.16564 (8)0.0295 (3)
H120.01270.32880.14380.035*
C130.05251 (13)0.2604 (2)0.24603 (9)0.0339 (3)
H130.01350.33380.27750.041*
C140.12622 (12)0.1549 (2)0.27919 (9)0.0362 (4)
H140.13590.15540.33300.043*
C150.18563 (12)0.0482 (2)0.23183 (9)0.0372 (4)
H150.23590.02150.25390.045*
C160.17020 (11)0.0452 (2)0.15125 (9)0.0307 (3)
H160.21120.02480.11990.037*
N10.04376 (10)0.18785 (15)0.00091 (7)0.0277 (3)
N20.11088 (9)0.04525 (16)0.01743 (7)0.0277 (3)
P10.08233 (3)0.16498 (5)0.01035 (2)0.02618 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0509 (10)0.0263 (8)0.0304 (8)0.0060 (7)0.0051 (7)0.0052 (6)
C20.0319 (7)0.0386 (8)0.0302 (7)0.0019 (6)0.0104 (6)0.0022 (6)
C110.0285 (7)0.0237 (7)0.0250 (7)0.0039 (5)0.0019 (5)0.0006 (5)
C120.0330 (7)0.0262 (7)0.0292 (7)0.0013 (6)0.0007 (6)0.0004 (6)
C130.0375 (8)0.0345 (8)0.0298 (8)0.0014 (6)0.0017 (6)0.0076 (7)
C140.0391 (9)0.0413 (9)0.0283 (7)0.0057 (7)0.0076 (6)0.0036 (6)
C150.0339 (8)0.0385 (9)0.0392 (8)0.0016 (7)0.0129 (6)0.0017 (7)
C160.0269 (7)0.0306 (7)0.0346 (7)0.0002 (6)0.0009 (6)0.0042 (6)
N10.0323 (6)0.0226 (6)0.0282 (6)0.0037 (5)0.0036 (5)0.0076 (5)
N20.0314 (6)0.0252 (6)0.0265 (6)0.0025 (5)0.0099 (5)0.0015 (5)
P10.0307 (2)0.0230 (2)0.0248 (2)0.00033 (14)0.00652 (14)0.00337 (13)
Geometric parameters (Å, º) top
C1—N11.4583 (18)C12—H120.9300
C1—H1A0.9600C13—C141.384 (2)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.389 (2)
C2—N21.4605 (17)C14—H140.9300
C2—H2A0.9600C15—C161.395 (2)
C2—H2B0.9600C15—H150.9300
C2—H2C0.9600C16—H160.9300
C11—C161.398 (2)N1—N2i1.4321 (17)
C11—C121.400 (2)N1—P11.6953 (14)
C11—P11.8412 (15)N2—N1i1.4321 (17)
C12—C131.393 (2)N2—P11.6984 (12)
N1—C1—H1A109.5C12—C13—H13120.0
N1—C1—H1B109.5C13—C14—C15119.73 (14)
H1A—C1—H1B109.5C13—C14—H14120.1
N1—C1—H1C109.5C15—C14—H14120.1
H1A—C1—H1C109.5C14—C15—C16120.24 (14)
H1B—C1—H1C109.5C14—C15—H15119.9
N2—C2—H2A109.5C16—C15—H15119.9
N2—C2—H2B109.5C15—C16—C11120.72 (14)
H2A—C2—H2B109.5C15—C16—H16119.6
N2—C2—H2C109.5C11—C16—H16119.6
H2A—C2—H2C109.5N2i—N1—C1114.56 (12)
H2B—C2—H2C109.5N2i—N1—P1120.94 (9)
C16—C11—C12118.12 (13)C1—N1—P1121.23 (10)
C16—C11—P1121.12 (11)N1i—N2—C2114.43 (11)
C12—C11—P1119.90 (11)N1i—N2—P1120.04 (9)
C13—C12—C11121.04 (14)C2—N2—P1119.18 (10)
C13—C12—H12119.5N1—P1—N2106.49 (6)
C11—C12—H12119.5N1—P1—C11101.67 (6)
C14—C13—C12120.08 (14)N2—P1—C11100.84 (6)
C14—C13—H13120.0
C16—C11—C12—C132.7 (2)N2i—N1—P1—C1166.99 (11)
P1—C11—C12—C13172.18 (11)C1—N1—P1—C11134.55 (11)
C11—C12—C13—C140.5 (2)N1i—N2—P1—N137.75 (13)
C12—C13—C14—C151.3 (2)C2—N2—P1—N1112.73 (11)
C13—C14—C15—C161.0 (2)N1i—N2—P1—C1168.00 (11)
C14—C15—C16—C111.3 (2)C2—N2—P1—C11141.52 (11)
C12—C11—C16—C153.1 (2)C16—C11—P1—N1148.76 (12)
P1—C11—C16—C15172.42 (12)C12—C11—P1—N142.10 (12)
N2i—N1—P1—N238.17 (13)C16—C11—P1—N239.20 (13)
C1—N1—P1—N2120.30 (12)C12—C11—P1—N2151.65 (11)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC16H22N4P2
Mr332.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)13.2879 (16), 7.5426 (9), 17.125 (2)
V3)1716.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.38 × 0.27 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10040, 1873, 1591
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.094, 1.08
No. of reflections1873
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank Project AuTEK (Mintek and Harmony Gold) and the University of the Witwatersrand for financial support.

References

First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355–1357.  CrossRef CAS Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds