metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m545-m546

6-(2-Chloro­benzyl­amino)purinium tetra­chlorido(di­methyl sulfoxide-κO)(nitrosyl-κN)ruthenate(III) monohydrate

aDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, Křížkovského 10, CZ-771 47 Olomouc, Czech Republic
*Correspondence e-mail: zdenek.travnicek@upol.cz

(Received 7 March 2008; accepted 10 March 2008; online 14 March 2008)

The asymmetric unit of the title complex salt, (C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O, contains a 6-(2-chloro­benzyl­amino)purinium cation, a tetra­chlorido(dimethyl sulfoxide)nitro­sylruthenate(III) anion and one solvent water mol­ecule. The RuIII atom is octa­hedrally coordinated by four Cl atoms in the equatorial plane, and by a dimethyl sulfoxide O atom and a nitrosyl N atom in axial positions. The cation is an N3-protonated N7 tautomer. Inter­molecular N–H⋯N hydrogen bonds connect two cations into centrosymmetric dimers, with an N⋯N distance of 2.821 (4) Å. The crystal structure also involves N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds.

Related literature

For related structures of 6-benzyl­amino­purine derivatives, see: Maloň et al. (2001[Maloň, M., Trávníček, Z., Maryško, M., Zbořil, R., Mašláň, M., Marek, J., Doležal, K., Rolčík, J., Kryštof, V. & Strnad, M. (2001). Inorg. Chim. Acta, 323, 119-129.], 2002[Maloň, M., Trávníček, Z., Maryško, M., Marek, J., Doležal, K., Rolčík, J. & Strnad, M. (2002). Transition Met. Chem. 27, 580-586.]); Trávníček et al. (2004[Trávníček, Z., Popa, I. & Doležal, K. (2004). Acta Cryst. C60, o662-o664.], 2005[Trávníček, Z., Klanicová, A., Popa, I. & Rolčík, J. (2005). J. Inorg. Biochem. 99, 776-786.], 2007[Trávníček, Z., George, K. M., Matiková-Maľarová, M. & Baran, P. (2007). Acta Cryst. E63, o3859.]); Trávníček & Matiková-Maľarová (2006[Trávníček, Z. & Matiková-Maľarová, M. (2006). Acta Cryst. E62, o5097-o5099.]). For the structure of a related Ru complex, see: Serli et al. (2002[Serli, B., Zangrando, E., Iengo, E., Mestroni, G., Yellowlees, L. & Alessio, E. (2002). Inorg. Chem. 41, 4033-4043.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O

  • Mr = 629.73

  • Orthorhombic, P b c a

  • a = 15.6229 (5) Å

  • b = 12.8014 (4) Å

  • c = 22.6866 (16) Å

  • V = 4537.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 120 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur2 diffractometer with CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.604, Tmax = 0.721

  • 36172 measured reflections

  • 3984 independent reflections

  • 3588 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.09

  • 3984 reflections

  • 279 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N9i 0.88 1.97 2.821 (4) 164
N6—H6A⋯O3ii 0.88 2.41 3.046 (4) 130
N6—H6A⋯Cl2ii 0.88 2.66 3.312 (3) 132
N7—H7A⋯O3ii 0.88 2.45 2.976 (4) 119
N7—H7A⋯Cl2ii 0.88 2.68 3.290 (3) 127
N7—H7A⋯Cl3ii 0.88 2.82 3.424 (3) 128
O3—H3W⋯Cl3iii 0.904 (19) 2.56 (3) 3.386 (3) 152 (4)
O3—H3V⋯Cl4iv 0.909 (19) 2.61 (3) 3.402 (3) 146 (4)
O3—H3V⋯Cl5iv 0.909 (19) 2.69 (3) 3.406 (3) 136 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our systematic study of Ru(III) complexes involving substituted 6-benzylaminopurines, we have prepared the title complex salt, (I), Fig. 1. The structure comprises a 6-(2-chlorobenzylamino)purin-3-ium cation, a [tetrachloro(dimethyl sulfoxide-κO)(nitrosyl-κN)]ruthenate(III) anion and one water molecule of crystallization. The cation exists as the N3-protonated N7 tautomer and contains three different aromatic rings: benzene, pyrimidine (A) and imidazole (B). The A and B rings are nearly co-planar forming a dihedral angle of 1.49 (1)°, while the angle between the benzene ring and purine skeleton (rings A + B) is 85.95 (7)°. The bond lengths and angles in the cation of (I) are similar to those found for 6-(3-chlorobenzylamino)purinium chloride (Maloň et al., 2001), 6-(4-chlorobenzylamino)purinium perchlorate (Maloň et al., 2002), 6-(4-methoxybenzylamino)purinium chloride (Trávníček et al., 2004), 6-(3-methoxybenzylamino)purinium chloride monohydrate (Trávníček et al., 2005), 6-(3-bromobenzylamino)purinium chloride (Trávníček et al., 2006) and 6-(4-hydroxybenzylamino)purinium chloride (Trávníček et al., 2007). Suprisingly, only nine Ru complexes having a RuCl4NO coordination geometry have been structurally characterized up to now and deposited in the CSD (Cambridge Structural Database, Version 5.29; Allen, 2002). Moreover, the title complex salt represents only the second X-ray structure determined involving a Ru(NO-κN)Cl4(DMSO-κO) moiety.

The geometry about the RuIII atom can be described as a distorted octahedron, as can be seen from the following angles: Cl2-Ru1-Cl4 (174.92 (3)°), Cl3-Ru1-Cl5 (172.39 (3)°), and O1-Ru1-N2 (178.16 (12)°). The N-bonded nitrosyl group occupies a position trans to the O-coordinated dimethyl sulfoxide (DMSO). The Ru–Cl, Ru–N and Ru–O bond lengths of 2.3585 (9)-2.3798 (8), 1.703 (3), and 2.042 (2) Å, respectively, are close to those found for [(DMSO)2H][trans-RuCl4(NO)(DMSO-κO)] (2.356 (2)-2.373 (2), 1.712 (5), and 2.029 (3) Å, respectively) (Serli et al., 2002).

The O—H···Cl, N—H···Cl, N–H···O and N—H···N hydrogen bonds in (I) contribute to the stabilization of the secondary structure (Table 1, Figs. 2 and 3). Non-bonding interactions of the type C17···C11xi (3.3914 (5) Å), C17···Cl6xi (3.3825 (4) Å), C17—H17A···O3xii (C···O = 3.4419 (5) Å), C16—H16C···Cl3vii (C···Cl = 3.5709 (6) Å) are also present [symmetry codes: xi: 1-x, 0.5+y, 0.5-z; xii: 1.5-x, 0.5+y, z; vii: -0.5+x, y, 0.5-z]. The periodic alternation of anionic and cationic layers in the ac plane can be seen from Fig. 3.

Related literature top

For related structures of 6-benzylaminopurine derivatives, see: Maloň et al. (2001, 2002); Trávníček et al. (2004, 2005, 2007); Trávníček & Matiková-Maľarová (2006). For the structure of a related Ru complex, see: Serli et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title complex salt, (I), was prepared by mixing of an ethanolic suspension (2 ml) of 6-(2-chlorobenzylamino)purine and an ethanolic solution (3 ml) of [(DMSO)2H][RuCl4NO(DMSO-κO)] (DMSO = dimethyl sulfoxide) in a molar ratio of 2:1. The reaction mixture was stirred at room temperature for 5 min. After this time, a violet solution formed which was left to stand at room temperature. Violet crystals, suitable for single-crystal X-ray analysis, were deposited after slow evaporation of the solvent over a period of two days.

Refinement top

All H atoms were located in difference maps and refined using a riding model, with C–H distances of 0.95 and 0.99 Å, N–H distances of 0.88 Å, and with Uiso(H) values of 1.2Ueq(C,N). The O–H atoms were refined freely, see Table 1 for distances. The highest unassigned difference Fourier peak of 1.25 e Å-3 is located 0.84 Å from the Ru1 atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the non-H atoms as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen bonding interactions of the type O—H···Cl, N—H···Cl, N–H···O and N—H···N (dashed lines) operating in the crystal structure of (I). Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1.5 - x, 1 - y, 1/2 + z; (v) 1.5 - x, 1 - y, -1/2 + z; (vi) 1/2 + x, 1 + y, 0.5 - z; (vii) -1/2 + x, y, 0.5 - z; (viii) 2 - x, 1 - y, 1 - z.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of non-bonding C–H···Cl, C–H···O, C···Cl and C···C (dashed lines) interactions. Symmetry codes: (vii) -1/2 + x, y, 0.5 - z; (ix) 1 - x, -1/2 + y, 0.5 - z; (x) 1.5 - x, -1/2 + y, z; (xi) 1 - x, 1/2 + y, 0.5 - z; (xii) 1.5 - x, 1/2 + y, z.
6-(2-Chlorobenzylamino)purinium tetrachlorido(dimethyl sulfoxide-κO)(nitrosyl-κN)ruthenate(III) monohydrate top
Crystal data top
(C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2OF(000) = 2512
Mr = 629.73Dx = 1.844 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 29289 reflections
a = 15.6229 (5) Åθ = 2.6–31.9°
b = 12.8014 (4) ŵ = 1.40 mm1
c = 22.6866 (16) ÅT = 120 K
V = 4537.2 (4) Å3Prism, violet
Z = 80.40 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with CCD detector
3984 independent reflections
Radiation source: Enhance (Mo) X-ray Source3588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 2.6°
rotation method ω scansh = 1815
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1315
Tmin = 0.604, Tmax = 0.721l = 2626
36172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0366P)2 + 10.7079P]
where P = (Fo2 + 2Fc2)/3
3984 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 1.25 e Å3
2 restraintsΔρmin = 0.58 e Å3
Crystal data top
(C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2OV = 4537.2 (4) Å3
Mr = 629.73Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.6229 (5) ŵ = 1.40 mm1
b = 12.8014 (4) ÅT = 120 K
c = 22.6866 (16) Å0.40 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with CCD detector
3984 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3588 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.721Rint = 0.018
36172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0366P)2 + 10.7079P]
where P = (Fo2 + 2Fc2)/3
3984 reflectionsΔρmax = 1.25 e Å3
279 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.616687 (16)0.769508 (19)0.208516 (10)0.01845 (9)
S10.47079 (7)0.93802 (7)0.19053 (4)0.0406 (3)
N10.57623 (16)0.3182 (2)0.47999 (11)0.0210 (6)
O10.52917 (14)0.85527 (17)0.16242 (10)0.0250 (5)
Cl20.67103 (5)0.72294 (6)0.11452 (3)0.02083 (17)
C20.5321 (2)0.2412 (2)0.45576 (14)0.0225 (7)
H2A0.50520.25460.41900.027*
N20.68824 (19)0.6944 (2)0.24609 (12)0.0285 (6)
O20.7319 (2)0.6425 (2)0.27444 (12)0.0498 (8)
O30.87301 (19)0.6670 (2)0.18872 (13)0.0445 (7)
Cl30.70383 (5)0.92198 (7)0.20765 (4)0.0304 (2)
N30.52234 (16)0.1460 (2)0.47885 (11)0.0199 (5)
H3A0.49030.09860.46150.024*
Cl40.55053 (6)0.81931 (7)0.29846 (3)0.0326 (2)
C40.56383 (19)0.1251 (2)0.53017 (13)0.0183 (6)
Cl50.51797 (6)0.63075 (7)0.20103 (4)0.0317 (2)
C50.61254 (19)0.2011 (2)0.55736 (14)0.0198 (6)
Cl60.63017 (6)0.69071 (6)0.46836 (4)0.0329 (2)
C60.61565 (18)0.3025 (2)0.53287 (14)0.0189 (6)
N60.65345 (17)0.3834 (2)0.55878 (12)0.0224 (6)
H6A0.68130.37240.59190.027*
N70.64498 (18)0.1527 (2)0.60684 (12)0.0237 (6)
H7A0.67880.18090.63350.028*
C80.6151 (2)0.0543 (3)0.60655 (15)0.0237 (7)
H8A0.62870.00440.63610.028*
N90.56465 (17)0.0337 (2)0.56098 (12)0.0219 (6)
C90.6513 (2)0.4892 (2)0.53527 (14)0.0239 (7)
H9A0.66350.53890.56760.029*
H9B0.59280.50400.52070.029*
C100.7143 (2)0.5083 (2)0.48574 (14)0.0210 (7)
C110.7108 (2)0.6004 (2)0.45299 (14)0.0247 (7)
C120.7666 (2)0.6214 (3)0.40738 (15)0.0306 (8)
H12A0.76360.68590.38680.037*
C130.8268 (2)0.5472 (3)0.39215 (16)0.0358 (9)
H13A0.86480.55970.36020.043*
C140.8317 (2)0.4551 (3)0.42324 (17)0.0357 (9)
H14A0.87320.40410.41260.043*
C150.7766 (2)0.4362 (3)0.47003 (15)0.0281 (7)
H15A0.78150.37290.49160.034*
C160.3684 (3)0.8778 (5)0.1860 (3)0.094 (2)
H16A0.36640.81770.21280.142*
H16B0.35830.85420.14550.142*
H16C0.32420.92820.19730.142*
C170.4570 (3)1.0279 (3)0.13257 (18)0.0391 (9)
H17A0.51081.06540.12570.059*
H17B0.41211.07800.14310.059*
H17C0.44050.99050.09670.059*
H3W0.860 (3)0.606 (2)0.2071 (18)0.050*
H3V0.9236 (18)0.687 (3)0.2050 (18)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02301 (15)0.01753 (15)0.01482 (14)0.00037 (10)0.00315 (10)0.00055 (9)
S10.0678 (7)0.0305 (5)0.0233 (4)0.0244 (5)0.0070 (4)0.0014 (4)
N10.0198 (14)0.0203 (14)0.0229 (14)0.0022 (11)0.0009 (11)0.0034 (11)
O10.0259 (12)0.0285 (12)0.0207 (11)0.0062 (10)0.0028 (9)0.0053 (10)
Cl20.0188 (4)0.0246 (4)0.0191 (4)0.0011 (3)0.0003 (3)0.0024 (3)
C20.0215 (16)0.0227 (16)0.0232 (17)0.0017 (13)0.0035 (13)0.0038 (13)
N20.0396 (17)0.0275 (15)0.0183 (13)0.0064 (14)0.0060 (13)0.0014 (12)
O20.062 (2)0.0545 (18)0.0328 (15)0.0269 (16)0.0130 (14)0.0043 (13)
O30.0407 (16)0.0503 (18)0.0424 (17)0.0016 (14)0.0104 (13)0.0060 (14)
Cl30.0320 (5)0.0241 (4)0.0350 (5)0.0075 (3)0.0039 (4)0.0059 (3)
N30.0186 (13)0.0181 (13)0.0229 (14)0.0032 (11)0.0041 (11)0.0002 (11)
Cl40.0444 (5)0.0349 (5)0.0186 (4)0.0014 (4)0.0033 (4)0.0049 (3)
C40.0161 (15)0.0169 (15)0.0218 (16)0.0008 (12)0.0021 (12)0.0004 (12)
Cl50.0378 (5)0.0261 (4)0.0312 (5)0.0117 (4)0.0078 (4)0.0043 (3)
C50.0185 (15)0.0197 (15)0.0212 (15)0.0019 (13)0.0024 (12)0.0025 (13)
Cl60.0488 (5)0.0182 (4)0.0316 (4)0.0042 (4)0.0020 (4)0.0021 (3)
C60.0148 (15)0.0189 (15)0.0231 (16)0.0004 (12)0.0029 (12)0.0012 (13)
N60.0259 (14)0.0175 (13)0.0238 (14)0.0049 (11)0.0042 (11)0.0023 (11)
N70.0257 (14)0.0228 (14)0.0225 (14)0.0066 (12)0.0072 (11)0.0039 (11)
C80.0257 (17)0.0198 (16)0.0257 (17)0.0049 (13)0.0057 (14)0.0059 (13)
N90.0230 (14)0.0187 (13)0.0240 (14)0.0026 (11)0.0022 (11)0.0041 (11)
C90.0279 (17)0.0184 (16)0.0255 (17)0.0014 (13)0.0023 (14)0.0007 (13)
C100.0222 (16)0.0188 (15)0.0220 (16)0.0056 (13)0.0043 (13)0.0021 (13)
C110.0289 (18)0.0214 (16)0.0238 (17)0.0051 (14)0.0048 (14)0.0046 (13)
C120.037 (2)0.0308 (19)0.0239 (17)0.0133 (16)0.0009 (15)0.0044 (14)
C130.0263 (19)0.053 (2)0.0280 (19)0.0101 (17)0.0050 (15)0.0023 (17)
C140.0235 (18)0.045 (2)0.038 (2)0.0023 (16)0.0033 (16)0.0018 (18)
C150.0237 (17)0.0291 (18)0.0317 (18)0.0014 (14)0.0010 (14)0.0026 (15)
C160.050 (3)0.075 (4)0.158 (6)0.028 (3)0.062 (4)0.052 (4)
C170.045 (2)0.031 (2)0.041 (2)0.0084 (17)0.0006 (18)0.0047 (17)
Geometric parameters (Å, º) top
Ru1—N21.703 (3)N6—H6A0.8800
Ru1—O12.042 (2)N7—C81.344 (4)
Ru1—Cl52.3585 (9)N7—H7A0.8800
Ru1—Cl22.3713 (8)C8—N91.326 (4)
Ru1—Cl42.3746 (8)C8—H8A0.9500
Ru1—Cl32.3798 (8)C9—C101.514 (4)
S1—O11.536 (2)C9—H9A0.9900
S1—C171.761 (4)C9—H9B0.9900
S1—C161.778 (6)C10—C151.388 (5)
N1—C21.323 (4)C10—C111.394 (5)
N1—C61.363 (4)C11—C121.379 (5)
C2—N31.335 (4)C12—C131.382 (5)
C2—H2A0.9500C12—H12A0.9500
N2—O21.149 (4)C13—C141.376 (5)
O3—H3W0.904 (19)C13—H13A0.9500
O3—H3V0.909 (19)C14—C151.388 (5)
N3—C41.359 (4)C14—H14A0.9500
N3—H3A0.8800C15—H15A0.9500
C4—N91.363 (4)C16—H16A0.9800
C4—C51.380 (4)C16—H16B0.9800
C5—N71.379 (4)C16—H16C0.9800
C5—C61.412 (5)C17—H17A0.9800
Cl6—C111.745 (3)C17—H17B0.9800
C6—N61.329 (4)C17—H17C0.9800
N6—C91.457 (4)
N2—Ru1—O1178.16 (12)C5—N7—H7A126.6
N2—Ru1—Cl592.30 (10)N9—C8—N7113.4 (3)
O1—Ru1—Cl586.00 (7)N9—C8—H8A123.3
N2—Ru1—Cl294.19 (10)N7—C8—H8A123.3
O1—Ru1—Cl285.09 (6)C8—N9—C4103.6 (3)
Cl5—Ru1—Cl288.86 (3)N6—C9—C10114.0 (3)
N2—Ru1—Cl490.41 (10)N6—C9—H9A108.7
O1—Ru1—Cl490.24 (7)C10—C9—H9A108.7
Cl5—Ru1—Cl488.82 (3)N6—C9—H9B108.7
Cl2—Ru1—Cl4174.92 (3)C10—C9—H9B108.7
N2—Ru1—Cl395.26 (10)H9A—C9—H9B107.6
O1—Ru1—Cl386.44 (7)C15—C10—C11116.9 (3)
Cl5—Ru1—Cl3172.39 (3)C15—C10—C9122.6 (3)
Cl2—Ru1—Cl389.65 (3)C11—C10—C9120.5 (3)
Cl4—Ru1—Cl392.06 (3)C12—C11—C10122.7 (3)
O1—S1—C17102.31 (16)C12—C11—Cl6118.4 (3)
O1—S1—C16102.2 (2)C10—C11—Cl6118.8 (3)
C17—S1—C1697.5 (3)C11—C12—C13118.9 (3)
C2—N1—C6119.4 (3)C11—C12—H12A120.5
S1—O1—Ru1123.75 (13)C13—C12—H12A120.5
N1—C2—N3125.2 (3)C14—C13—C12120.0 (3)
N1—C2—H2A117.4C14—C13—H13A120.0
N3—C2—H2A117.4C12—C13—H13A120.0
O2—N2—Ru1175.0 (3)C13—C14—C15120.4 (4)
H3W—O3—H3V104 (4)C13—C14—H14A119.8
C2—N3—C4117.4 (3)C15—C14—H14A119.8
C2—N3—H3A121.3C14—C15—C10121.1 (3)
C4—N3—H3A121.3C14—C15—H15A119.5
N3—C4—N9127.7 (3)C10—C15—H15A119.5
N3—C4—C5120.5 (3)S1—C16—H16A109.5
N9—C4—C5111.8 (3)S1—C16—H16B109.5
N7—C5—C4104.5 (3)H16A—C16—H16B109.5
N7—C5—C6136.1 (3)S1—C16—H16C109.5
C4—C5—C6119.4 (3)H16A—C16—H16C109.5
N6—C6—N1118.4 (3)H16B—C16—H16C109.5
N6—C6—C5123.9 (3)S1—C17—H17A109.5
N1—C6—C5117.8 (3)S1—C17—H17B109.5
C6—N6—C9123.5 (3)H17A—C17—H17B109.5
C6—N6—H6A118.2S1—C17—H17C109.5
C9—N6—H6A118.2H17A—C17—H17C109.5
C8—N7—C5106.8 (3)H17B—C17—H17C109.5
C8—N7—H7A126.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N9i0.881.972.821 (4)164
N6—H6A···O3ii0.882.413.046 (4)130
N6—H6A···Cl2ii0.882.663.312 (3)132
N7—H7A···O3ii0.882.452.976 (4)119
N7—H7A···Cl2ii0.882.683.290 (3)127
N7—H7A···Cl3ii0.882.823.424 (3)128
O3—H3W···Cl3iii0.90 (2)2.56 (3)3.386 (3)152 (4)
O3—H3V···Cl4iv0.91 (2)2.61 (3)3.402 (3)146 (4)
O3—H3V···Cl5iv0.91 (2)2.69 (3)3.406 (3)136 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y1/2, z; (iv) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O
Mr629.73
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)15.6229 (5), 12.8014 (4), 22.6866 (16)
V3)4537.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur2
diffractometer with CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.604, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
36172, 3984, 3588
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.09
No. of reflections3984
No. of parameters279
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0366P)2 + 10.7079P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.25, 0.58

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N9i0.881.972.821 (4)163.5
N6—H6A···O3ii0.882.413.046 (4)129.7
N6—H6A···Cl2ii0.882.663.312 (3)131.8
N7—H7A···O3ii0.882.452.976 (4)118.6
N7—H7A···Cl2ii0.882.683.290 (3)127.0
N7—H7A···Cl3ii0.882.823.424 (3)127.6
O3—H3W···Cl3iii0.904 (19)2.56 (3)3.386 (3)152 (4)
O3—H3V···Cl4iv0.909 (19)2.61 (3)3.402 (3)146 (4)
O3—H3V···Cl5iv0.909 (19)2.69 (3)3.406 (3)136 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y1/2, z; (iv) x+1/2, y, z+1/2.
 

Acknowledgements

Financial support of this work by the Ministry of Education, Youth and Sport of the Czech Republic (MSM6198959218) and the Grant Agency of the Czech Republic (GAČR 203/08/P436) is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMaloň, M., Trávníček, Z., Maryško, M., Marek, J., Doležal, K., Rolčík, J. & Strnad, M. (2002). Transition Met. Chem. 27, 580–586.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaloň, M., Trávníček, Z., Maryško, M., Zbořil, R., Mašláň, M., Marek, J., Doležal, K., Rolčík, J., Kryštof, V. & Strnad, M. (2001). Inorg. Chim. Acta, 323, 119–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSerli, B., Zangrando, E., Iengo, E., Mestroni, G., Yellowlees, L. & Alessio, E. (2002). Inorg. Chem. 41, 4033–4043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrávníček, Z., George, K. M., Matiková-Maľarová, M. & Baran, P. (2007). Acta Cryst. E63, o3859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z., Klanicová, A., Popa, I. & Rolčík, J. (2005). J. Inorg. Biochem. 99, 776–786.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTrávníček, Z. & Matiková-Maľarová, M. (2006). Acta Cryst. E62, o5097–o5099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrávníček, Z., Popa, I. & Doležal, K. (2004). Acta Cryst. C60, o662–o664.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m545-m546
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds