organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2′,N5′-Diiso­propyl­idene­pyrazine-2,5-dicarbohydrazide dihydrate

aThe Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science and Engineering, Huaqiao University, Quanzhou 362021, Fujian, People's Republic of China
*Correspondence e-mail: new_19820128@yahoo.com.cn

(Received 15 January 2008; accepted 26 January 2008; online 7 March 2008)

In the title compound, C12H16N6O2·2H2O, the organic mol­ecule, except for the methyl H atoms, is essentially planar, the r.m.s. deviation from planarity being 0.044 Å. The crystal structure is stabilized by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds which form chains.

Related literature

For related literature, see: Wu et al. (2003[Wu, W.-S., Liu, S.-X. & Huang, Z.-X. (2003). Chin. J. Appl. Chem. 20, 138-143.]); Wardell et al. (2006[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3765-o3767.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N6O2·2H2O

  • Mr = 312.34

  • Triclinic, [P \overline 1]

  • a = 7.1924 (5) Å

  • b = 9.9409 (8) Å

  • c = 11.0903 (9) Å

  • α = 80.261 (6)°

  • β = 84.605 (5)°

  • γ = 89.537 (6)°

  • V = 778.03 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.50 × 0.16 × 0.16 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.984

  • 12989 measured reflections

  • 3643 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.209

  • S = 1.00

  • 3643 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O4 0.86 2.51 3.369 (4) 177
N3—H3A⋯O3 0.86 2.52 3.377 (4) 176
O3—H3D⋯N4i 0.83 (4) 2.15 (4) 2.977 (3) 177 (3)
O3—H3D⋯O1i 0.83 (4) 2.57 (3) 3.006 (3) 115 (3)
O3—H3C⋯N1 0.76 (5) 2.24 (5) 2.974 (3) 162 (5)
O4—H4C⋯N2 0.99 (7) 2.05 (7) 2.972 (3) 153 (6)
O4—H4D⋯N6ii 0.76 (4) 2.25 (4) 3.010 (4) 177 (4)
O4—H4D⋯O2ii 0.76 (4) 2.58 (4) 2.984 (3) 115 (3)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Research into amine and hydrazine derivatives has become a major growth area of biological chemistry, structural chemistry, medicine and catalysis. As part of our work in this area, we here present the crystal structure of the title compound.

The structure of the title compound is illustrated in Fig. 1. Except for the H atoms of the methyl groups, the organic molecule is essentially planar, the r.m.s. deviation being 0.044 Å. In the hydrazino fragment, the N—N bond lengths are normal, while the C—N distances are slightly longer than those in pyrazine-2-carbohydrazide (Wardell et al., 2006). In the crystal structure, molecules are linked to form chains by intermolecular O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For related literature, see: Wu et al. (2003; Wardell et al. (2006).

Experimental top

The title compound was prepared by the hydroponics method. 2,5-Pyrazinedihydrazide, as a yellow powder, was synthesized from 2,5-pyrazinedicarboxylic acid dihydrate by esterification and acylation (Wu et al., 2003). 2,5-Pyrazinedihydrazide (20 mg) was dissolved in acetone (20 ml) with stirring for one hour. Transparent orange crystals of the title compound were obtained from the mother liquor by slow evaporation at room temperature after one week.

Refinement top

The positions of the O-bound H atoms were located from a difference Fourier map and refined freely; the refined O—H distances lie in the range 0.76 (4) - 0.99 (7) Å. The H atoms of methyl groups C11 and C12 were also located in a difference map. Other H atoms bonded to C or N were placed in calculated positions. All C– and N-bound C atoms were refined as riding, with N—H = 0.86 Å, Csp2—H = 0.93 Å and Csp3—H = 0.96 Å; Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the hydrogen bond interactions as dashed lines.
N2',N5'-Diisopropylidenepyrazine-2,5-dicarbohydrazide dihydrate top
Crystal data top
C12H16N6O2·2H2OZ = 2
Mr = 312.34F(000) = 332
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1924 (5) ÅCell parameters from 1817 reflections
b = 9.9409 (8) Åθ = 2.8–22.6°
c = 11.0903 (9) ŵ = 0.10 mm1
α = 80.261 (6)°T = 296 K
β = 84.605 (5)°Prism, orange
γ = 89.537 (6)°0.50 × 0.16 × 0.16 mm
V = 778.03 (10) Å3
Data collection top
Bruker P4
diffractometer
3643 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 14.6306 pixels mm-1θmax = 27.9°, θmin = 1.9°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear (Rigaku, 2000)
k = 1313
Tmin = 0.965, Tmax = 0.984l = 1414
12989 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.03P]
where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H16N6O2·2H2Oγ = 89.537 (6)°
Mr = 312.34V = 778.03 (10) Å3
Triclinic, P1Z = 2
a = 7.1924 (5) ÅMo Kα radiation
b = 9.9409 (8) ŵ = 0.10 mm1
c = 11.0903 (9) ÅT = 296 K
α = 80.261 (6)°0.50 × 0.16 × 0.16 mm
β = 84.605 (5)°
Data collection top
Bruker P4
diffractometer
3643 independent reflections
Absorption correction: multi-scan
(CrystalClear (Rigaku, 2000)
1540 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.049
12989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
3643 reflectionsΔρmin = 0.25 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.4457 (3)0.9409 (2)0.18538 (19)0.0570 (6)
H5A0.32730.95490.18980.068*
N20.2140 (3)0.8126 (2)0.05799 (19)0.0543 (6)
N10.3605 (3)0.6324 (2)0.09296 (18)0.0538 (6)
N30.1252 (3)0.5072 (2)0.22285 (19)0.0563 (6)
H3A0.24430.49780.23340.068*
N40.0048 (3)0.4399 (2)0.2847 (2)0.0580 (6)
O10.1200 (2)0.6055 (2)0.12989 (18)0.0732 (6)
C30.3958 (3)0.7863 (2)0.0460 (2)0.0482 (6)
C10.1776 (3)0.6578 (2)0.0798 (2)0.0463 (6)
N60.5616 (3)1.0070 (2)0.25097 (19)0.0580 (6)
C50.0469 (4)0.5873 (3)0.1459 (2)0.0515 (6)
C60.5253 (4)0.8541 (3)0.1146 (2)0.0578 (7)
O20.6916 (3)0.8306 (2)0.1056 (2)0.0898 (8)
C20.1058 (3)0.7480 (3)0.0051 (2)0.0543 (7)
H2A0.02200.76390.00120.065*
C40.4690 (3)0.6970 (3)0.0294 (2)0.0551 (7)
H4A0.59700.68180.03590.066*
C100.4878 (4)1.0898 (3)0.3168 (2)0.0573 (7)
C120.6179 (5)1.1587 (4)0.3842 (3)0.0696 (9)
H12A0.592 (4)1.136 (3)0.468 (3)0.084*
H12B0.609 (4)1.264 (3)0.364 (2)0.084*
H12C0.742 (5)1.131 (3)0.363 (3)0.084*
C70.0747 (4)0.3704 (3)0.3630 (2)0.0581 (7)
C90.0602 (4)0.2998 (3)0.4275 (3)0.0764 (9)
H9A0.18530.32620.40410.115*
H9B0.04840.20280.40480.115*
H9C0.03290.32530.51470.115*
C110.2879 (4)1.1256 (3)0.3329 (3)0.0796 (9)
H11A0.23391.07990.41150.095*
H11B0.22371.09850.26880.095*
H11C0.27541.22260.32800.095*
C80.2769 (4)0.3527 (3)0.4004 (3)0.0831 (10)
H8A0.29880.37270.48840.125*
H8B0.31220.26030.37200.125*
H8C0.34980.41380.36510.125*
O30.5953 (4)0.4902 (3)0.2671 (2)0.0869 (8)
O40.0209 (4)0.9821 (3)0.2080 (3)0.0965 (9)
H3D0.710 (6)0.479 (3)0.271 (3)0.106 (14)*
H3C0.556 (7)0.526 (5)0.215 (4)0.15 (2)*
H4C0.032 (9)0.939 (7)0.138 (6)0.28 (3)*
H4D0.127 (6)0.985 (4)0.219 (3)0.096 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0391 (12)0.0708 (14)0.0701 (14)0.0022 (10)0.0142 (10)0.0330 (12)
N20.0372 (12)0.0665 (14)0.0653 (13)0.0044 (10)0.0077 (10)0.0272 (11)
N10.0385 (12)0.0677 (14)0.0604 (13)0.0037 (10)0.0050 (10)0.0260 (11)
N30.0395 (12)0.0720 (14)0.0655 (13)0.0035 (11)0.0071 (10)0.0333 (11)
N40.0466 (13)0.0693 (14)0.0660 (14)0.0023 (11)0.0126 (10)0.0298 (12)
O10.0349 (11)0.0945 (15)0.1046 (15)0.0051 (10)0.0114 (9)0.0553 (12)
C30.0375 (14)0.0582 (15)0.0520 (14)0.0020 (12)0.0073 (11)0.0166 (12)
C10.0358 (14)0.0528 (15)0.0528 (15)0.0015 (11)0.0047 (11)0.0159 (12)
N60.0449 (13)0.0728 (15)0.0641 (13)0.0030 (11)0.0125 (10)0.0293 (12)
C50.0415 (15)0.0583 (16)0.0574 (15)0.0009 (13)0.0066 (12)0.0167 (13)
C60.0413 (16)0.0764 (18)0.0618 (17)0.0017 (14)0.0084 (13)0.0274 (14)
O20.0381 (11)0.1373 (19)0.1155 (17)0.0089 (11)0.0134 (10)0.0795 (15)
C20.0362 (14)0.0670 (17)0.0659 (16)0.0045 (12)0.0075 (12)0.0278 (14)
C40.0363 (14)0.0734 (18)0.0621 (16)0.0030 (13)0.0061 (11)0.0297 (14)
C100.0491 (17)0.0667 (17)0.0614 (16)0.0036 (14)0.0110 (13)0.0225 (14)
C120.0596 (19)0.085 (2)0.0721 (19)0.0070 (18)0.0121 (16)0.0323 (18)
C70.0552 (17)0.0645 (17)0.0602 (16)0.0022 (14)0.0103 (13)0.0239 (14)
C90.068 (2)0.086 (2)0.088 (2)0.0015 (17)0.0230 (16)0.0406 (17)
C110.0578 (19)0.091 (2)0.104 (2)0.0091 (16)0.0141 (16)0.0544 (19)
C80.061 (2)0.114 (3)0.090 (2)0.0072 (18)0.0084 (16)0.059 (2)
O30.0485 (14)0.128 (2)0.1033 (18)0.0056 (13)0.0192 (12)0.0660 (16)
O40.0506 (15)0.122 (2)0.137 (2)0.0060 (14)0.0248 (14)0.0695 (17)
Geometric parameters (Å, º) top
N5—C61.352 (3)C10—C111.480 (4)
N5—N61.393 (3)C10—C121.489 (4)
N5—H5A0.8600C12—H12A0.92 (3)
N2—C21.330 (3)C12—H12B1.03 (3)
N2—C31.330 (3)C12—H12C0.95 (3)
N1—C41.335 (3)C7—C81.492 (4)
N1—C11.337 (3)C7—C91.502 (3)
N3—C51.346 (3)C9—H9A0.9600
N3—N41.394 (3)C9—H9B0.9600
N3—H3A0.8600C9—H9C0.9600
N4—C71.264 (3)C11—H11A0.9600
O1—C51.213 (3)C11—H11B0.9600
C3—C41.388 (3)C11—H11C0.9600
C3—C61.489 (3)C8—H8A0.9600
C1—C21.386 (3)C8—H8B0.9600
C1—C51.492 (3)C8—H8C0.9600
N6—C101.272 (3)O3—H3D0.83 (4)
C6—O21.215 (3)O3—H3C0.76 (5)
C2—H2A0.9300O4—H4C0.99 (7)
C4—H4A0.9300O4—H4D0.76 (4)
C6—N5—N6117.9 (2)C11—C10—C12116.8 (2)
C6—N5—H5A121.1C10—C12—H12A112.0 (18)
N6—N5—H5A121.1C10—C12—H12B112.1 (16)
C2—N2—C3116.6 (2)H12A—C12—H12B106 (2)
C4—N1—C1116.5 (2)C10—C12—H12C108.8 (17)
C5—N3—N4117.1 (2)H12A—C12—H12C108 (3)
C5—N3—H3A121.5H12B—C12—H12C110 (2)
N4—N3—H3A121.5N4—C7—C8127.2 (2)
C7—N4—N3118.5 (2)N4—C7—C9116.7 (3)
N2—C3—C4121.7 (2)C8—C7—C9116.1 (2)
N2—C3—C6119.6 (2)C7—C9—H9A109.5
C4—C3—C6118.7 (2)C7—C9—H9B109.5
N1—C1—C2121.4 (2)H9A—C9—H9B109.5
N1—C1—C5119.6 (2)C7—C9—H9C109.5
C2—C1—C5119.0 (2)H9A—C9—H9C109.5
C10—N6—N5118.2 (2)H9B—C9—H9C109.5
O1—C5—N3123.8 (2)C10—C11—H11A109.4
O1—C5—C1119.8 (2)C10—C11—H11B109.8
N3—C5—C1116.4 (2)H11A—C11—H11B109.8
O2—C6—N5123.5 (2)C10—C11—H11C109.9
O2—C6—C3120.6 (2)H11A—C11—H11C109.8
N5—C6—C3115.9 (2)H11B—C11—H11C108.2
N2—C2—C1122.1 (2)C7—C8—H8A109.5
N2—C2—H2A118.9C7—C8—H8B109.5
C1—C2—H2A118.9H8A—C8—H8B109.5
N1—C4—C3121.8 (2)C7—C8—H8C109.5
N1—C4—H4A119.1H8A—C8—H8C109.5
C3—C4—H4A119.1H8B—C8—H8C109.5
N6—C10—C11127.2 (2)H3D—O3—H3C115 (4)
N6—C10—C12116.0 (3)H4C—O4—H4D117 (4)
C5—N3—N4—C7175.9 (2)N2—C3—C6—O2179.5 (3)
C2—N2—C3—C40.7 (4)C4—C3—C6—O20.7 (4)
C2—N2—C3—C6179.6 (2)N2—C3—C6—N50.5 (4)
C4—N1—C1—C20.7 (4)C4—C3—C6—N5179.3 (2)
C4—N1—C1—C5178.8 (2)C3—N2—C2—C10.1 (4)
C6—N5—N6—C10179.3 (2)N1—C1—C2—N20.6 (4)
N4—N3—C5—O11.4 (4)C5—C1—C2—N2178.9 (2)
N4—N3—C5—C1179.63 (19)C1—N1—C4—C30.2 (4)
N1—C1—C5—O1176.7 (2)N2—C3—C4—N10.5 (4)
C2—C1—C5—O12.8 (4)C6—C3—C4—N1179.7 (2)
N1—C1—C5—N34.3 (3)N5—N6—C10—C110.0 (4)
C2—C1—C5—N3176.2 (2)N5—N6—C10—C12179.5 (2)
N6—N5—C6—O20.2 (4)N3—N4—C7—C81.3 (4)
N6—N5—C6—C3179.8 (2)N3—N4—C7—C9180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O40.862.513.369 (4)177
N3—H3A···O30.862.523.377 (4)176
O3—H3D···N4i0.83 (4)2.15 (4)2.977 (3)177 (3)
O3—H3D···O1i0.83 (4)2.57 (3)3.006 (3)115 (3)
O3—H3C···N10.76 (5)2.24 (5)2.974 (3)162 (5)
O4—H4C···N20.99 (7)2.05 (7)2.972 (3)153 (6)
O4—H4D···N6ii0.76 (4)2.25 (4)3.010 (4)177 (4)
O4—H4D···O2ii0.76 (4)2.58 (4)2.984 (3)115 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H16N6O2·2H2O
Mr312.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1924 (5), 9.9409 (8), 11.0903 (9)
α, β, γ (°)80.261 (6), 84.605 (5), 89.537 (6)
V3)778.03 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.16 × 0.16
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(CrystalClear (Rigaku, 2000)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
12989, 3643, 1540
Rint0.049
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.209, 1.00
No. of reflections3643
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O40.862.513.369 (4)176.8
N3—H3A···O30.862.523.377 (4)175.6
O3—H3D···N4i0.83 (4)2.15 (4)2.977 (3)177 (3)
O3—H3D···O1i0.83 (4)2.57 (3)3.006 (3)115 (3)
O3—H3C···N10.76 (5)2.24 (5)2.974 (3)162 (5)
O4—H4C···N20.99 (7)2.05 (7)2.972 (3)153 (6)
O4—H4D···N6ii0.76 (4)2.25 (4)3.010 (4)177 (4)
O4—H4D···O2ii0.76 (4)2.58 (4)2.984 (3)115 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

We are grateful for financial support from the National Science Foundation of Fujian Province of China (No. E0610017, 2003 F 006).

References

First citationRigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o3765–o3767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, W.-S., Liu, S.-X. & Huang, Z.-X. (2003). Chin. J. Appl. Chem. 20, 138–143.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds