organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o763-o764

6-Meth­­oxy-2,3,4,9-tetra­hydro-1H-carbazol-1-one

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and cInstitute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: athiru@vsnl.net

(Received 17 March 2008; accepted 22 March 2008; online 29 March 2008)

The carbazole unit of the title mol­ecule, C13H13NO2, is not planar. The dihedral angle between the benzene ring and the pyrrole ring is 1.69 (6)°. The cyclo­hexene ring adopts an envelope conformation. Inter­molecular C—H⋯O and N—H⋯O hydrogen bonds are present in the crystal structure. A C—H⋯π inter­action, involving the benzene ring, is also found in the crystal structure.

Related literature

For related literature, see: Bhattacharya & Chakraborty (1987[Bhattacharya, P. & Chakraborty, D. P. (1987). Progress in the Chemistry of Organic Natural Products, Vol. 52, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, pp. 299-371. Wien: Springer Verlag.]); Chakraborty & Roy (1991[Chakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products Vol. 57, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, pp. 71-110. Wien: Springer Verlag.]); Chakraborty (1993[Chakraborty, D. P. (1993). The Alkaloids, Vol. 44, edited by A. Brossi, pp. 257-282. New York: Academic Press.]); Knolker (1986[Knolker, H. J. (1986). Advances in Nitrogen Heterocycles, Vol. 1, edited by C. J. Moody, p. 273. Geenwich, Connecticut: JAI Press.]); Lescot et al. (1986[Lescot, E., Muzard, G., Markovits, J., Belleney, J., Roques, B. P. & Le Pecq, J. B. (1986). J. Med. Chem. 29, 1731-1737.]); Hook et al. (1990[Hook, D. J., Yacobucci, J. J., O'Connor, S., Lee, M., Kerns, E., Krishnan, B., Matson, J. & Hesler, G. J. (1990). Antibiot. 43, 1347-1348.]); Hirata et al. (1999[Hirata, K., Ito, C., Furukawa, H., Itoigawa, M., Cosentino, L. M. & Lee, K. H. (1999). Bioorg. Med. Chem. Lett. 9, 119-122.]); Kapil (1971[Kapil, R. S. (1971). The Alkaloids, Vol. 13, edited by R. H. F. Manske, p. 273. New York: Academic Press.]); Knolker & Reddy (2002[Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]); Sowmithran & Rajendra Prasad (1986[Sowmithran, D. & Rajendra Prasad, K. J. (1986). Heterocycles, 24, 711-717.]); Rajendra Prasad & Vijayalakshmi (1994[Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. 33B, 481-482.]). Gunaseelan et al. (2007a[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413-o2414.],b[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729-o2730.]) and Thiruvalluvar et al. (2007[Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.]) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2

  • Mr = 215.24

  • Monoclinic, P 21 /c

  • a = 9.0627 (2) Å

  • b = 14.0285 (3) Å

  • c = 8.5506 (2) Å

  • β = 101.815 (1)°

  • V = 1064.06 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 160 (1) K

  • 0.35 × 0.28 × 0.13 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 28554 measured reflections

  • 3077 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.145

  • S = 1.12

  • 3077 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.948 (17) 1.918 (17) 2.8313 (14) 161.2 (15)
C2—H2A⋯O2ii 0.99 2.52 3.4962 (15) 169
C4—H4BCgiii 0.99 2.57 3.492 (1) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg is the centroid of the benzene ring.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Heterocylic compounds are encountered in a very large number of groups of organic compounds. They play a vital role in the metabolism of all living cells, which are widely distributed in nature and are essential to life. Among them the carbazole heterocycles have emerged as an important class, based on their fascinating structure and high degree of biological activities (Bhattacharya & Chakraborty,1987; Chakraborty & Roy, 1991; Chakraborty, 1993). A number of carbazole alkaloids with intriguing novel structures and useful biological activities were isolated from natural sources over the past decades; these attracted chemists to frame novel synthetic strategies towards the synthesis of carbazole and its derivatives (Knolker,1986; Lescot et al., 1986). These alkaloids represent a new and interesting variant in the large number of indole alkaloids, which have yielded several important drugs. Several reports have appeared on the synthesis of carbazole derivatives, in connection with the search for newer physiologically active compounds (Hook et al., 1990; Hirata et al., 1999; Kapil, 1971; Knolker & Reddy, 2002). The preparation of 1-oxo compounds via their corresponding hydrazones have been reported (Sowmithran & Rajendra Prasad, 1986; Rajendra Prasad & Vijayalakshmi, 1994).

Gunaseelan et al. (2007a,b) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The carbazole unit of the title molecule is not planar. The dihedral angle between the benzene ring and the pyrrole ring is 1.69 (6)°. The cyclohexene ring adopts an envelope conformation. Intermolecular C2—H2A···O2(x + 1, y, z + 1) and N9—H9···O1(-x + 1, -y + 1, -z + 1) hydrogen bonds are present in the crystal structure (Fig. 2). A C4—H4B···π(x, 3/2 - y,1/2 + z) interaction involving the benzene ring is also found in the structure, .

Related literature top

For related literature, see: Bhattacharya & Chakraborty (1987); Chakraborty & Roy (1991); Chakraborty (1993); Knolker (1986); Lescot et al. (1986); Hook et al. (1990); Hirata et al. (1999); Kapil (1971); Knolker & Reddy (2002); Sowmithran & Rajendra Prasad (1986); Rajendra Prasad & Vijayalakshmi (1994). Gunaseelan et al. (2007a,b) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar. Cg is the centroid of the benzene ring.

Experimental top

A solution of 2-(2-(4-methoxyphenyl)hydrazono)cyclohexanone (232 mg, 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398-403 K for 2 h. The reaction was monitored by TLC. After completion of the reaction the contents were cooled and poured on to cold water with stirring. The brown solid which separated was purified by passing through a column of silica gel and eluting with a (95:5) petroleum ether-ethyl acetate mixture, yielding the title compound (144 mg, 67%). The compound thus obtained was recrystallized using ethanol.

Refinement top

The H atom bonded to N9 was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = xUeq(parent atom), where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
6–Methoxy–2,3,4,9–tetrahydro–1H–carbazol–1–one top
Crystal data top
C13H13NO2F(000) = 456
Mr = 215.24Dx = 1.344 Mg m3
Monoclinic, P21/cMelting point: 536 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.0627 (2) ÅCell parameters from 3175 reflections
b = 14.0285 (3) Åθ = 2.0–30.0°
c = 8.5506 (2) ŵ = 0.09 mm1
β = 101.815 (1)°T = 160 K
V = 1064.06 (4) Å3Tablet, colourless
Z = 40.35 × 0.28 × 0.13 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2601 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.038
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = 1212
ϕ and ω scans with κ offsetsk = 019
28554 measured reflectionsl = 012
3077 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.2332P]
where P = (Fo2 + 2Fc2)/3
3077 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H13NO2V = 1064.06 (4) Å3
Mr = 215.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0627 (2) ŵ = 0.09 mm1
b = 14.0285 (3) ÅT = 160 K
c = 8.5506 (2) Å0.35 × 0.28 × 0.13 mm
β = 101.815 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2601 reflections with I > 2σ(I)
28554 measured reflectionsRint = 0.038
3077 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.33 e Å3
3077 reflectionsΔρmin = 0.24 e Å3
149 parameters
Special details top

Experimental. Solvent used: EtOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.742 (2) Frames collected: 359 Seconds exposure per frame: 100 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53223 (10)0.52978 (7)0.72771 (11)0.0324 (3)
O20.29638 (10)0.67151 (8)0.18475 (11)0.0354 (3)
N90.27900 (11)0.55709 (7)0.45710 (11)0.0229 (3)
C10.41200 (13)0.56555 (8)0.74513 (13)0.0229 (3)
C20.38660 (13)0.59515 (9)0.90781 (13)0.0251 (3)
C30.27324 (13)0.67715 (8)0.90149 (13)0.0236 (3)
C40.12214 (12)0.65469 (8)0.79020 (12)0.0213 (3)
C4A0.14868 (12)0.61976 (7)0.63321 (12)0.0196 (3)
C4B0.05307 (12)0.61980 (7)0.47874 (13)0.0197 (3)
C50.09638 (12)0.65107 (8)0.42156 (13)0.0219 (3)
C60.15394 (12)0.64344 (8)0.25953 (13)0.0241 (3)
C70.06690 (13)0.60611 (8)0.15394 (13)0.0253 (3)
C80.07867 (13)0.57456 (8)0.20802 (13)0.0236 (3)
C8A0.13856 (12)0.58090 (7)0.37241 (13)0.0208 (3)
C9A0.28448 (12)0.58046 (8)0.61527 (13)0.0213 (3)
C160.38951 (15)0.71146 (13)0.28342 (18)0.0441 (5)
H2A0.484200.614840.974910.0301*
H2B0.349780.539390.959630.0301*
H3A0.256280.689461.010440.0283*
H3B0.316070.735720.863900.0283*
H4A0.068030.605390.839380.0256*
H4B0.058820.712780.773730.0256*
H50.155090.676410.491920.0262*
H70.109880.602720.043000.0303*
H80.136330.549420.136480.0284*
H90.3587 (19)0.5296 (12)0.416 (2)0.038 (4)*
H16A0.487420.728860.217420.0661*
H16B0.340890.768450.336970.0661*
H16C0.404280.664540.363740.0661*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (5)0.0436 (5)0.0274 (4)0.0137 (4)0.0075 (3)0.0016 (4)
O20.0230 (4)0.0513 (6)0.0293 (5)0.0061 (4)0.0008 (3)0.0103 (4)
N90.0239 (5)0.0262 (5)0.0202 (4)0.0049 (3)0.0084 (3)0.0009 (3)
C10.0245 (5)0.0232 (5)0.0222 (5)0.0045 (4)0.0076 (4)0.0004 (4)
C20.0249 (5)0.0302 (6)0.0205 (5)0.0067 (4)0.0054 (4)0.0010 (4)
C30.0235 (5)0.0252 (5)0.0227 (5)0.0028 (4)0.0064 (4)0.0045 (4)
C40.0224 (5)0.0233 (5)0.0196 (5)0.0030 (4)0.0073 (4)0.0010 (4)
C4A0.0215 (5)0.0188 (5)0.0199 (5)0.0012 (3)0.0073 (4)0.0012 (3)
C4B0.0215 (5)0.0182 (5)0.0205 (5)0.0004 (4)0.0071 (4)0.0004 (3)
C50.0212 (5)0.0223 (5)0.0232 (5)0.0014 (4)0.0071 (4)0.0022 (4)
C60.0208 (5)0.0260 (5)0.0249 (5)0.0018 (4)0.0036 (4)0.0033 (4)
C70.0274 (6)0.0272 (5)0.0211 (5)0.0025 (4)0.0045 (4)0.0034 (4)
C80.0276 (5)0.0245 (5)0.0204 (5)0.0009 (4)0.0089 (4)0.0025 (4)
C8A0.0231 (5)0.0200 (5)0.0210 (5)0.0001 (4)0.0085 (4)0.0005 (3)
C9A0.0232 (5)0.0222 (5)0.0197 (5)0.0030 (4)0.0073 (4)0.0002 (4)
C160.0261 (6)0.0610 (10)0.0421 (8)0.0118 (6)0.0000 (5)0.0185 (7)
Geometric parameters (Å, º) top
O1—C11.2360 (15)C6—C71.4154 (16)
O2—C61.3756 (15)C7—C81.3785 (17)
O2—C161.4247 (18)C8—C8A1.4021 (15)
N9—C8A1.3706 (15)C2—H2A0.9900
N9—C9A1.3826 (14)C2—H2B0.9900
N9—H90.948 (17)C3—H3A0.9900
C1—C9A1.4446 (16)C3—H3B0.9900
C1—C21.5138 (16)C4—H4A0.9900
C2—C31.5359 (17)C4—H4B0.9900
C3—C41.5318 (16)C5—H50.9500
C4—C4A1.4940 (14)C7—H70.9500
C4A—C4B1.4236 (15)C8—H80.9500
C4A—C9A1.3854 (16)C16—H16A0.9800
C4B—C8A1.4189 (15)C16—H16B0.9800
C4B—C51.4124 (16)C16—H16C0.9800
C5—C61.3810 (15)
O1···N92.9314 (13)C16···H3Bviii2.9800
O1···N9i2.8313 (14)H2A···O2x2.5200
O1···H92.804 (17)H2A···C16x2.9800
O1···H2Bii2.8400H2A···H16Ax2.5900
O1···H9i1.918 (17)H2B···O1ii2.8400
O2···H2Aiii2.5200H2B···C2ii3.0700
N9···O12.9314 (13)H3A···C8xi3.0300
N9···O1i2.8313 (14)H3A···H8xi2.5900
C1···C16iv3.590 (2)H3B···C9A3.0200
C2···C2ii3.5370 (17)H3B···C8Av3.0400
C3···C8Av3.5983 (15)H3B···C16iv2.9800
C4B···C4Bvi3.5353 (14)H3B···H16Aiv2.4300
C6···C9Avi3.5958 (16)H4A···C7vi2.9700
C8A···C3vii3.5983 (15)H4A···C8vi2.8400
C9A···C6vi3.5958 (16)H4B···C4Bv2.9400
C16···C1viii3.590 (2)H4B···C5v2.8200
C1···H16Aiv3.0500H4B···C6v2.7800
C1···H9i3.028 (17)H4B···C7v2.8900
C2···H2Bii3.0700H4B···C8v3.0500
C4B···H4Bvii2.9400H4B···C8Av3.0600
C5···H16C2.7400H5···C162.5300
C5···H4Bvii2.8200H5···H16B2.3100
C5···H16B2.7400H5···H16C2.3100
C6···H4Bvii2.7800H8···H3Aix2.5900
C7···H4Bvii2.8900H9···O12.804 (17)
C7···H4Avi2.9700H9···O1i1.918 (17)
C8···H4Bvii3.0500H9···C1i3.028 (17)
C8···H4Avi2.8400H16A···H2Aiii2.5900
C8···H3Aix3.0300H16A···C1viii3.0500
C8A···H4Bvii3.0600H16A···H3Bviii2.4300
C8A···H3Bvii3.0400H16B···C52.7400
C9A···H3B3.0200H16B···H52.3100
C16···H2Aiii2.9800H16C···C52.7400
C16···H52.5300H16C···H52.3100
C6—O2—C16116.79 (10)C1—C2—H2A109.00
C8A—N9—C9A107.61 (9)C1—C2—H2B109.00
C9A—N9—H9125.6 (10)C3—C2—H2A109.00
C8A—N9—H9126.8 (10)C3—C2—H2B109.00
O1—C1—C9A123.53 (10)H2A—C2—H2B108.00
O1—C1—C2121.72 (10)C2—C3—H3A109.00
C2—C1—C9A114.73 (10)C2—C3—H3B109.00
C1—C2—C3113.55 (9)C4—C3—H3A109.00
C2—C3—C4111.98 (9)C4—C3—H3B109.00
C3—C4—C4A109.74 (9)H3A—C3—H3B108.00
C4B—C4A—C9A106.45 (9)C3—C4—H4A110.00
C4—C4A—C4B130.85 (10)C3—C4—H4B110.00
C4—C4A—C9A122.69 (10)C4A—C4—H4A110.00
C5—C4B—C8A120.56 (10)C4A—C4—H4B110.00
C4A—C4B—C8A106.61 (9)H4A—C4—H4B108.00
C4A—C4B—C5132.82 (10)C4B—C5—H5121.00
C4B—C5—C6117.50 (10)C6—C5—H5121.00
O2—C6—C5124.74 (10)C6—C7—H7119.00
O2—C6—C7113.70 (10)C8—C7—H7119.00
C5—C6—C7121.55 (10)C7—C8—H8121.00
C6—C7—C8121.66 (10)C8A—C8—H8121.00
C7—C8—C8A117.60 (10)O2—C16—H16A109.00
N9—C8A—C8129.88 (10)O2—C16—H16B109.00
C4B—C8A—C8121.11 (10)O2—C16—H16C109.00
N9—C8A—C4B108.97 (9)H16A—C16—H16B109.00
C1—C9A—C4A124.16 (10)H16A—C16—H16C109.00
N9—C9A—C1125.48 (10)H16B—C16—H16C109.00
N9—C9A—C4A110.36 (10)
C16—O2—C6—C50.21 (18)C4B—C4A—C9A—N90.74 (12)
C16—O2—C6—C7178.89 (12)C9A—C4A—C4B—C8A0.84 (11)
C9A—N9—C8A—C8177.52 (11)C4—C4A—C9A—N9178.17 (10)
C8A—N9—C9A—C4A0.35 (12)C4—C4A—C4B—C8A177.95 (10)
C9A—N9—C8A—C4B0.20 (12)C9A—C4A—C4B—C5179.48 (11)
C8A—N9—C9A—C1179.00 (10)C5—C4B—C8A—N9179.49 (10)
C9A—C1—C2—C329.21 (14)C4A—C4B—C8A—N90.65 (12)
O1—C1—C2—C3152.17 (11)C5—C4B—C8A—C81.54 (16)
C2—C1—C9A—N9178.39 (11)C4A—C4B—C5—C6177.60 (11)
C2—C1—C9A—C4A0.87 (16)C8A—C4B—C5—C60.89 (16)
O1—C1—C9A—C4A179.47 (11)C4A—C4B—C8A—C8177.31 (10)
O1—C1—C9A—N90.21 (19)C4B—C5—C6—O2179.27 (11)
C1—C2—C3—C454.63 (13)C4B—C5—C6—C70.24 (16)
C2—C3—C4—C4A49.23 (12)O2—C6—C7—C8179.92 (11)
C3—C4—C4A—C4B156.37 (11)C5—C6—C7—C80.80 (18)
C3—C4—C4A—C9A22.25 (14)C6—C7—C8—C8A0.17 (17)
C4—C4A—C4B—C50.7 (2)C7—C8—C8A—N9178.45 (11)
C4B—C4A—C9A—C1178.62 (10)C7—C8—C8A—C4B0.97 (16)
C4—C4A—C9A—C12.47 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z1; (iv) x+1, y+3/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z+1; (vii) x, y+3/2, z1/2; (viii) x1, y+3/2, z1/2; (ix) x, y, z1; (x) x+1, y, z+1; (xi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.948 (17)1.918 (17)2.8313 (14)161.2 (15)
C2—H2A···O2x0.992.523.4962 (15)169
C4—H4B···Cgv0.992.573.492 (1)156
Symmetry codes: (i) x+1, y+1, z+1; (v) x, y+3/2, z+1/2; (x) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO2
Mr215.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)160
a, b, c (Å)9.0627 (2), 14.0285 (3), 8.5506 (2)
β (°) 101.815 (1)
V3)1064.06 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.28 × 0.13
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28554, 3077, 2601
Rint0.038
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.146, 1.12
No. of reflections3077
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.948 (17)1.918 (17)2.8313 (14)161.2 (15)
C2—H2A···O2ii0.992.523.4962 (15)169
C4—H4B···Cgiii0.992.573.492 (1)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

KJR acknowledges the UGC, New Delhi, India, for the award of a Major Research Project grant F.No.31–122/2005. MS thanks the UGC, New Delhi for the award of a research fellowship.

References

First citationBhattacharya, P. & Chakraborty, D. P. (1987). Progress in the Chemistry of Organic Natural Products, Vol. 52, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, pp. 299–371. Wien: Springer Verlag.  Google Scholar
First citationChakraborty, D. P. (1993). The Alkaloids, Vol. 44, edited by A. Brossi, pp. 257–282. New York: Academic Press.  Google Scholar
First citationChakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products Vol. 57, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, pp. 71–110. Wien: Springer Verlag.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413–o2414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHirata, K., Ito, C., Furukawa, H., Itoigawa, M., Cosentino, L. M. & Lee, K. H. (1999). Bioorg. Med. Chem. Lett. 9, 119–122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHook, D. J., Yacobucci, J. J., O'Connor, S., Lee, M., Kerns, E., Krishnan, B., Matson, J. & Hesler, G. J. (1990). Antibiot. 43, 1347–1348.  CrossRef CAS Google Scholar
First citationKapil, R. S. (1971). The Alkaloids, Vol. 13, edited by R. H. F. Manske, p. 273. New York: Academic Press.  Google Scholar
First citationKnolker, H. J. (1986). Advances in Nitrogen Heterocycles, Vol. 1, edited by C. J. Moody, p. 273. Geenwich, Connecticut: JAI Press.  Google Scholar
First citationKnolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science CrossRef PubMed Google Scholar
First citationLescot, E., Muzard, G., Markovits, J., Belleney, J., Roques, B. P. & Le Pecq, J. B. (1986). J. Med. Chem. 29, 1731–1737.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationRajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. 33B, 481–482.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSowmithran, D. & Rajendra Prasad, K. J. (1986). Heterocycles, 24, 711–717.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o763-o764
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds