organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,10-Di­methyl-9,10-per­­oxy-9,10-di­hydro­anthracene

aSchool of Computer and Computing Science, Zhejiang University City College, Hangzhou, Zhejiang 310015, People's Republic of China
*Correspondence e-mail: wangyw@zucc.edu.cn

(Received 10 July 2007; accepted 27 December 2007; online 5 March 2008)

The structure of the title compound, C16H14O2, contains one half-mol­ecule in the asymmetric unit and the mol­ecule is located on a mirror plane. The dihedral angle between the two benzene ring planes is 53.07 (6)°. The crystal structure involves intermolecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Burrows et al. (1999[Burrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236-239.]); Gable et al. (1996[Gable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674-675.]); Karolak-Wojciechowska et al. (1998[Karolak-Wojciechowska, J., Trzezwinska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905-911.]); Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]); Price (1946[Price, C. C. (1946). The Alkylation of Aromatic Compounds by the Friedel-Crafts Method, Vol. 3, Organic Reactions III, edited by R. Adams, pp. 1-82. New York: John Wiley Press.]); Simpson et al. (2004[Simpson, M., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1081-o1083.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O2

  • Mr = 238.29

  • Orthorhombic, C m c 21

  • a = 12.9873 (7) Å

  • b = 11.0810 (8) Å

  • c = 8.8368 (8) Å

  • V = 1271.72 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (1) K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.958, Tmax = 0.976

  • 5690 measured reflections

  • 812 independent reflections

  • 585 reflections with F2 > 2σ(F2)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.00

  • 699 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.64 3.526 (2) 159
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The Friedel–Crafts reaction of an alkyl halide with an aromatic hydrocarbon in the presence of aluminium chloride yields a substituted phenyl compound (Price, 1946). The reaction does not, however, stop at the stage of mono-substitution, an unpredictable compound was reported and determined by X-ray crystal structure analysis. The molecule of the title compound lie on a crystallographic mirror plane, which pass through atoms C1/O1/O2/C8/C9/C10 (Fig. 1). The geometrical parameters for (1) are similar to those of related 9,10-bridged anthracene derivatives (Simpson et al., 2004; Gable et al., 1996; Burrows et al., 1999). Atoms C1, C8 are almost coplanar with the benzene ring plane, and the deviating distance from the benzene ring are 0.0074 Å, -0.066 Å respectively. The dihedral angle between the plane of bridge atoms C1—O1—O2—C8 and the benzene ring plane is 63.45 (5)°. The benzene ring plane and its symmetry-related one form the dihedral angle of 53.07 (6)°, which is smaller than that of 9,10-bridged anthrancene systems, e.g. the corresponding dihedral angle in 11,12-bis(N,N-dimethyl-aminomethyl)-9,10-dihydro-9,10-ethanoanthrancene (Karolak-Wojciechowska et al., 1998) is 58.8 (2)°. The three six-membered rings of the bicycle core of (1) [C1—C2—C7—C8—C7i—C2i, C1—C2—C7—C8—O2—O1, C1—C2i—C7i—C8—O2—O1, symmetric code (i): 1 - x,y,z] are all forced into boat forms. Intermolecular weak interactions, C4—H4···O2ii [symmetric code (ii): 1/2 + x, 1/2 - y, -1/2 + z] and C6—H6···C4iii [symmctric code (iii): x, 1 - y, 1/2 + z], link the molecules into circles (Fig. 2). The bridged O2 atom attached to H4 atom of neighbouring benzene ring may result in the longer distance O2—C8, compared with the bond length C1—O1 (Table 1).

Related literature top

For related literature, see: Burrows et al. (1999); Gable et al. (1996); Karolak-Wojciechowska et al. (1998); Larson (1970); Price (1946); Simpson et al. (2004).

Experimental top

Ethyl 2-bromo-2-methylpropionate (3.84 g, 20 mmol) was added to a 50 ml flask equipped with a reflux condenser and large magnetic stirrer. Anhydrous benzene (20 ml) was added to the flask, followed by fresh anhydrous AlCl3 (9.00 g, 67.5 mmol) in small portions. The solution was then slowly heated to the reflux temperature and at this time the exit of the reflux condenser was connected to a flowing-water HBr trap. The mixture was heated a total of 24 h without interruption. The reaction mixture was then cooled to 278k. and treated with 20 ml of 50/50 (by volume) conc. HCl/H2O to decompose the catalyst complex. The benzene layer was then separated, washed once with ice-cold H2O (12 ml) and twice with dilute aqueous sodium hydroxide. The organic phase was evaporate. After 6 days, a single-crystal suitable for X-ray analysis was obtained by recrystallization from ethanol.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and included in the refinement in riding model, with Uiso(H) = 1.2Ueq(carrier atom). In the absence of anomalous scatterers, no attempt was made to establish the absolute configuration of the title compound.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. A view of (1). Displacement ellipsoids are drawn at 30% probability level and H atoms are shown as small circles of arbitary radii. Symmetry code (i): 1 - x, y, z
[Figure 2] Fig. 2. Packing arrangement for (1).
9,10-Dimethyl-9,10-peroxy-9,10-dihydroanthracene top
Crystal data top
C16H14O2F(000) = 504.00
Mr = 238.29Dx = 1.244 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2c -2Cell parameters from 2234 reflections
a = 12.9873 (7) Åθ = 2.4–27.3°
b = 11.0810 (8) ŵ = 0.08 mm1
c = 8.8368 (8) ÅT = 296 K
V = 1271.72 (16) Å3Chunk, yellow
Z = 40.40 × 0.35 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
585 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.083
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.958, Tmax = 0.976k = 1412
5690 measured reflectionsl = 1111
812 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0011Fo2 + σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.107Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.19 e Å3
699 reflectionsExtinction correction: (Larson, 1970)
94 parametersExtinction coefficient: 132 (34)
H-atom parameters constrained
Crystal data top
C16H14O2V = 1271.72 (16) Å3
Mr = 238.29Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 12.9873 (7) ŵ = 0.08 mm1
b = 11.0810 (8) ÅT = 296 K
c = 8.8368 (8) Å0.40 × 0.35 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
812 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
585 reflections with F2 > 2σ(F2)
Tmin = 0.958, Tmax = 0.976Rint = 0.083
5690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04294 parameters
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
699 reflectionsΔρmin = 0.19 e Å3
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0σ(F2) is used only for calculating R-factor (gt).

Data collection(812 indenpent reflections but 699 in refinement): The author of the software, Dr Lee Daniels (ldaniels@RigakuMSC.com) explain this problem (see following). The number of reflections used to refine the cell is taken from the diffractometer program, which uses all available reflections measured in different scans. Even though some reflections are used more than once, they measured at different psi angles and therefore represent independent observations for determination of the cell dimensions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50000.1212 (2)0.7053 (3)0.0584 (7)
O20.50000.1937 (2)0.8453 (2)0.0547 (6)
C10.50000.1992 (2)0.5707 (4)0.0488 (9)
C20.59500 (13)0.27732 (18)0.5847 (2)0.0466 (6)
C30.67877 (17)0.2829 (2)0.4883 (3)0.0631 (8)
C40.76037 (19)0.3580 (2)0.5212 (3)0.0750 (10)
C50.75816 (19)0.4289 (3)0.6492 (3)0.0769 (9)
C60.67600 (18)0.4228 (2)0.7475 (3)0.0655 (8)
C70.59468 (14)0.3466 (2)0.7153 (2)0.0482 (5)
C80.50000.3253 (3)0.8122 (4)0.0502 (9)
C90.500000 (10)0.1104 (4)0.4404 (5)0.0734 (12)
C100.500000 (10)0.3808 (4)0.9660 (5)0.0786 (13)
H30.68000.23590.40110.076*
H40.81700.36080.45690.090*
H50.81250.48110.66930.092*
H60.67530.46960.83490.079*
H1010.56030.35551.02010.094*
H1020.50000.46710.95670.094*
H9010.56040.06060.44620.088*
H9020.50000.15380.34640.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0637 (13)0.0364 (11)0.0750 (17)0.00000.00000.0017 (13)
O20.0565 (13)0.0537 (13)0.0538 (15)0.00000.00000.0087 (11)
C10.0523 (17)0.0373 (15)0.057 (2)0.00000.00000.0067 (16)
C20.0403 (12)0.0385 (10)0.0608 (15)0.0054 (8)0.0021 (10)0.0028 (10)
C30.0594 (14)0.0578 (15)0.072 (2)0.0127 (11)0.0150 (14)0.0089 (14)
C40.0450 (13)0.081 (2)0.099 (2)0.0072 (13)0.0146 (15)0.032 (2)
C50.0440 (13)0.0784 (19)0.108 (2)0.0167 (13)0.0131 (16)0.037 (2)
C60.0569 (14)0.0614 (15)0.078 (2)0.0120 (12)0.0224 (14)0.0061 (14)
C70.0400 (10)0.0440 (10)0.0606 (14)0.0016 (8)0.0061 (10)0.0019 (12)
C80.0492 (16)0.0492 (18)0.052 (2)0.00000.00000.0027 (15)
C90.089 (2)0.054 (2)0.077 (2)0.00000.00000.019 (2)
C100.089 (2)0.089 (2)0.058 (2)0.00000.00000.017 (2)
Geometric parameters (Å, º) top
O1—O21.475 (3)C7—C81.517 (3)
O1—C11.470 (4)C8—C101.492 (6)
O2—C81.487 (4)C3—H30.930
C1—C21.512 (2)C4—H40.930
C1—C2i1.512 (2)C5—H50.930
C1—C91.514 (5)C6—H60.930
C2—C31.383 (3)C9—H9010.960
C2—C71.386 (3)C9—H901i0.960
C3—C41.378 (3)C9—H9020.960
C4—C51.377 (4)C10—H1010.960
C5—C61.378 (3)C10—H101i0.960
C6—C71.382 (3)C10—H1020.960
O2—O1—C1111.0 (2)C7—C8—C10116.76 (19)
O1—O2—C8111.6 (2)C7i—C8—C10116.75 (19)
O1—C1—C2105.68 (18)C2—C3—H3119.9
O1—C1—C2i105.68 (18)C4—C3—H3119.9
O1—C1—C9103.5 (2)C3—C4—H4119.9
C2—C1—C2i109.3 (2)C5—C4—H4119.9
C2—C1—C9115.72 (18)C4—C5—H5119.8
C2i—C1—C9115.72 (18)C6—C5—H5119.8
C1—C2—C3128.1 (2)C5—C6—H6120.3
C1—C2—C7112.5 (2)C7—C6—H6120.3
C3—C2—C7119.37 (19)C1—C9—H901109.5
C2—C3—C4120.1 (2)C1—C9—H901i109.5
C3—C4—C5120.1 (2)C1—C9—H902109.5
C4—C5—C6120.4 (2)H901—C9—H901i109.5
C5—C6—C7119.4 (2)H901—C9—H902109.5
C2—C7—C6120.5 (2)H901i—C9—H902109.5
C2—C7—C8112.7 (2)C8—C10—H101109.5
C6—C7—C8126.7 (2)C8—C10—H101i109.5
O2—C8—C7105.30 (19)C8—C10—H102109.5
O2—C8—C7i105.30 (19)H101—C10—H101i109.4
O2—C8—C10103.0 (3)H101—C10—H102109.5
C7—C8—C7i108.3 (2)H101i—C10—H102109.5
O2—O1—C1—C257.93 (16)C1—C2—C7—C6179.4 (2)
O2—O1—C1—C2i57.93 (16)C1—C2—C7—C80.8 (2)
O1—O2—C8—C757.16 (18)C3—C2—C7—C61.5 (3)
O1—O2—C8—C7i57.16 (18)C3—C2—C7—C8177.1 (2)
O1—C1—C2—C3118.2 (2)C7—C2—C3—C40.8 (3)
O1—C1—C2—C759.5 (2)C2—C3—C4—C50.9 (4)
O1—C1—C2i—C3i118.2 (2)C3—C4—C5—C61.9 (4)
O1—C1—C2i—C7i59.5 (2)C4—C5—C6—C71.2 (4)
C2—C1—C2i—C3i128.5 (2)C5—C6—C7—C20.5 (3)
C2—C1—C2i—C7i53.8 (3)C5—C6—C7—C8177.9 (2)
C2i—C1—C2—C3128.5 (2)C2—C7—C8—O257.3 (2)
C2i—C1—C2—C753.8 (3)C2—C7—C8—C10170.8 (2)
C9—C1—C2—C34.3 (4)C2—C7—C8—C7i55.0 (3)
C9—C1—C2—C7173.3 (2)C6—C7—C8—O2121.2 (2)
C9—C1—C2i—C3i4.3 (4)C6—C7—C8—C107.7 (4)
C9—C1—C2i—C7i173.3 (2)C6—C7—C8—C7i126.5 (2)
C1—C2—C3—C4178.4 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.643.526 (2)159
Symmetry code: (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14O2
Mr238.29
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)296
a, b, c (Å)12.9873 (7), 11.0810 (8), 8.8368 (8)
V3)1271.72 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.958, 0.976
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
5690, 812, 585
Rint0.083
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.00
No. of reflections699
No. of parameters94
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
O1—C11.470 (4)O2—C81.487 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.9302.6433.526 (2)158.68
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236–239.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674–675.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKarolak-Wojciechowska, J., Trzezwinska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905–911.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationPrice, C. C. (1946). The Alkylation of Aromatic Compounds by the Friedel–Crafts Method, Vol. 3, Organic Reactions III, edited by R. Adams, pp. 1–82. New York: John Wiley Press.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, M., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1081–o1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds