metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,5-bis­­[4-(2-pyridylmethyl­amino)phen­yl]-1,3,4-oxa­diazole}bis­­[di­chlorido­mercury(II)]

aCollege of Chemistry, Chemical, Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: yubindong@sdnu.edu.cn

(Received 8 March 2008; accepted 11 March 2008; online 14 March 2008)

In the title centrosymmetric compound, [Hg2Cl4(C26H22N6O)2], each HgII center adopts a distorted HgN3Cl2 trigonal bipyramidal coordination geometry, formed by two pyridine N atoms, one imine N atom and two chloride anions. Within the organic ligand, the oxadiazole ring is nearly coplanar with the two benzene rings [dihedral angles = 5.9 (4) and 6.5 (4)°] and nearly perpendicular to the two pyridine rings with the same dihedral angle of 77.4 (4)°. The two organic ligands bridge two HgII ions to form the macrocyclic complex. Inter­molecular N—H⋯Cl and N—H⋯N hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Dong et al. (2003[Dong, Y.-B., Ma, J.-P. & Huang, R.-Q. (2003). Inorg. Chem. 42, 294-300.]). For related structures, see: Gallagher et al. (1999[Gallagher, J. F., Alyea, E. C. & Ferguson, G. (1999). Croat. Chem. Acta, 72, 243-250.]); Grupce et al. (1999[Grupce, O., Jouanouski, G., Kaitner, B. & Naumov, P. (1999). Croat. Chem. Acta, 72, 465-476.]). For synthesis, see: Ren et al. (1995[Ren, Z.-J., Jiang, E. & Zhou, H.-B. (1995). Youji Huaxue, 15, 218-220.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C26H22N6O)2]

  • Mr = 1411.98

  • Triclinic, [P \overline 1]

  • a = 8.5426 (19) Å

  • b = 9.945 (2) Å

  • c = 16.533 (4) Å

  • α = 83.773 (3)°

  • β = 80.001 (3)°

  • γ = 67.671 (2)°

  • V = 1278.2 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.26 mm−1

  • T = 298 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.113, Tmax = 0.153

  • 6681 measured reflections

  • 4652 independent reflections

  • 3878 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 4652 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 2.20 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—Cl1 2.373 (2)
Hg1—Cl2 2.451 (2)
Hg1—N3 2.587 (6)
Hg1—N4 2.275 (6)
Hg1—N6i 2.745 (7)
N4—Hg1—Cl1 145.19 (16)
N4—Hg1—Cl2 99.31 (16)
Cl1—Hg1—Cl2 114.87 (10)
N4—Hg1—N3 70.81 (18)
Cl1—Hg1—N3 98.44 (13)
Cl2—Hg1—N3 95.30 (13)
N4—Hg1—N6i 86.73 (19)
Cl1—Hg1—N6i 84.60 (15)
Cl2—Hg1—N6i 115.31 (15)
N3—Hg1—N6i 144.82 (18)
Symmetry code: (i) -x+2, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2ii 0.91 2.36 3.191 (8) 152
N5—H5⋯Cl1iii 0.86 2.68 3.517 (7) 166
Symmetry codes: (ii) x+1, y, z; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Combining metal ions with oxadiazole-bridging organic ligands may result in coordination polymers with novel network connectivities (Dong et al., 2003). Our interest in understanding the relationship between the metal coordination modes with such ligands and their extended structures led us to synthesize the title HgII compound, (I).

As shown in Fig. 1, there are five primary bonds to each HgII center, three Hg—N bonds and two Hg—Cl bonds, resulting in a distorted trigonal bipyramid coordination geometry around the Hg center. Three Hg—N bond distances (Table 1) are significantly different, but all agree with those reported previously (Gallagher et al., 1999; Grupce et al., 1999). The bond angles at Hg1 atom rang from 70.81 (18)° [N4—Hg—N3] to 145.19 (16)° [N4—Hg1—Cl1]. While the ligand chelates to a Hg atom by a pyridine N and an imine N atoms, the other pyridine N atom bridges to another Hg atom to form the title binuclear macrocyclic complex with the Hg···Hg separation of 12.969 (2) Å. Within the ligand, the dihedral angles between the oxadiazole and N4-pyridine rings and between the oxadiazole and N6-pyridine rings are identical [77.4 (4)°]. Intermolecular N—H···Cl and N—H···N hydrogen bonding helps to stabilize the crystal structure (Table 2).

Related literature top

For general background, see: Dong et al. (2003). For related structures, see: Gallagher et al. (1999); Grupce et al. (1999). For synthesis, see: Ren et al. (1995).

Experimental top

2,5-Bis(4-aminophenyl)-1,3,4-oxadiazole (L1) was prepared according to the literature method (Ren et al., 1995). A solution of L1 (2.56 g, 10 mmol) and 2-pyridylaldehyde (4 ml) in anhydrous EtOH (20 ml) was refluxed for 24 h, with HCOOH as catalyzer. After the mixture was cooled to room temperature, the precipitated product was filtered off, washed with EtOH and dried, yielding a light-yellow power [2,5-bis(4-((2-pyridinyl)methyleneamino)phenyl) -1,3,4-oxadiazole] (L2). Then the L2 was deoxidized by NaBH4 in anhydrous CH3OH (20 ml). The solvent was removed under reduced pressure, and the residue was washed with water to afford the ligand [2,5-bis(4-((2-pyridinylmethyl)amino)phenyl)-1,3,4-oxadiazole] (L) as a yellow solid. A solution of HgCl2 (13.58 mg, 0.05 mmol) in EtOH (8 ml) was layered onto a solution of the ligand L (21.7 mg, 0.05 mmol) in CH2Cl2 (8 ml). Single yellow crystals of the title compound were obtained after 7 d at room temperature.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.91 or 0.86 Å imine groups), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% displacement ellipsoids, hydrogen atoms have been omitted [symmetry code: (i) -x + 2,-y,-z].
Bis{µ-2,5-bis[4-(2-pyridylmethylamino)phenyl]-1,3,4- oxadiazole}bis[dichloridomercury(II)] top
Crystal data top
[Hg2Cl4(C26H22N6O)2]Z = 1
Mr = 1411.98F(000) = 684
Triclinic, P1Dx = 1.834 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5426 (19) ÅCell parameters from 2786 reflections
b = 9.945 (2) Åθ = 2.5–25.6°
c = 16.533 (4) ŵ = 6.26 mm1
α = 83.773 (3)°T = 298 K
β = 80.001 (3)°Block, yellow
γ = 67.671 (2)°0.40 × 0.40 × 0.30 mm
V = 1278.2 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4652 independent reflections
Radiation source: fine-focus sealed tube3878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1010
Tmin = 0.113, Tmax = 0.153k = 1211
6681 measured reflectionsl = 2012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.1058P]
where P = (Fo2 + 2Fc2)/3
4652 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 2.20 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Hg2Cl4(C26H22N6O)2]γ = 67.671 (2)°
Mr = 1411.98V = 1278.2 (5) Å3
Triclinic, P1Z = 1
a = 8.5426 (19) ÅMo Kα radiation
b = 9.945 (2) ŵ = 6.26 mm1
c = 16.533 (4) ÅT = 298 K
α = 83.773 (3)°0.40 × 0.40 × 0.30 mm
β = 80.001 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4652 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3878 reflections with I > 2σ(I)
Tmin = 0.113, Tmax = 0.153Rint = 0.023
6681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 2.20 e Å3
4652 reflectionsΔρmin = 0.84 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N60.7661 (9)0.1644 (7)0.4018 (4)0.0529 (16)
C50.6054 (9)0.1027 (8)0.3635 (4)0.0418 (16)
C60.5468 (11)0.2001 (8)0.2981 (4)0.0516 (19)
H6A0.53410.27640.32510.062*
H6B0.63560.24620.26360.062*
N50.3889 (8)0.1271 (7)0.2465 (4)0.0495 (15)
H50.29710.13540.25590.059*
C70.3785 (9)0.0447 (7)0.1829 (4)0.0399 (15)
Hg10.95952 (4)0.33183 (3)0.324081 (19)0.05155 (14)
Cl11.0242 (3)0.1191 (2)0.25208 (17)0.0723 (6)
Cl20.6820 (3)0.4107 (3)0.41247 (15)0.0854 (8)
O10.4543 (5)0.2726 (5)0.0143 (3)0.0354 (10)
N30.8599 (7)0.5232 (6)0.2061 (3)0.0371 (12)
H30.95110.51570.16660.045*
C190.7868 (8)0.4113 (8)0.1043 (4)0.0413 (16)
H190.90080.37950.08030.050*
C130.3210 (8)0.2390 (7)0.0028 (4)0.0380 (15)
C140.3883 (8)0.3660 (7)0.0762 (4)0.0356 (14)
C180.7341 (8)0.4991 (7)0.1714 (4)0.0363 (14)
C90.4933 (9)0.0866 (8)0.1119 (4)0.0419 (16)
H90.58370.11350.10620.050*
C110.2122 (8)0.0950 (8)0.0669 (4)0.0421 (16)
H110.11040.12780.03080.051*
C100.3426 (8)0.1393 (8)0.0594 (4)0.0368 (14)
N20.2294 (7)0.3897 (7)0.1005 (4)0.0472 (15)
C150.5034 (8)0.4177 (7)0.1072 (4)0.0347 (14)
C160.4485 (8)0.5123 (8)0.1708 (4)0.0412 (16)
H160.33310.54950.19240.049*
C120.2300 (9)0.0027 (8)0.1270 (4)0.0436 (16)
H120.14130.02820.13010.052*
C210.8165 (10)0.6524 (7)0.2504 (5)0.0481 (18)
H21A0.71510.66370.29030.058*
H21B0.78980.73650.21230.058*
N10.1858 (7)0.3049 (8)0.0520 (4)0.0508 (16)
C231.0048 (10)0.7665 (8)0.2940 (5)0.0516 (19)
H230.95190.85140.26370.062*
C200.6746 (8)0.3714 (8)0.0733 (4)0.0404 (15)
H200.71310.31210.02860.048*
C40.5020 (11)0.0367 (9)0.3836 (5)0.0547 (19)
H40.39090.07690.35640.066*
N41.0367 (7)0.5233 (6)0.3357 (3)0.0420 (13)
C220.9585 (9)0.6475 (7)0.2942 (4)0.0401 (15)
C251.2047 (10)0.6336 (9)0.3837 (5)0.055 (2)
H251.28810.62650.41510.066*
C170.5620 (9)0.5517 (8)0.2022 (4)0.0432 (16)
H170.52260.61500.24510.052*
C30.5663 (14)0.1169 (10)0.4453 (6)0.067 (2)
H3A0.50090.21330.45810.080*
C80.5139 (8)0.0050 (8)0.1727 (4)0.0415 (16)
H80.61780.04050.20710.050*
C10.8213 (13)0.0863 (11)0.4622 (6)0.069 (2)
H10.93180.12860.48970.083*
C241.1299 (11)0.7583 (9)0.3391 (5)0.058 (2)
H241.16280.83730.33910.069*
C261.1544 (9)0.5180 (8)0.3812 (4)0.0481 (17)
H261.20390.43320.41240.058*
C20.7255 (14)0.0522 (11)0.4864 (6)0.070 (3)
H20.76880.10120.53020.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N60.064 (4)0.042 (4)0.052 (4)0.020 (3)0.011 (3)0.011 (3)
C50.052 (4)0.034 (4)0.043 (4)0.017 (3)0.012 (3)0.006 (3)
C60.071 (5)0.036 (4)0.045 (4)0.019 (4)0.001 (4)0.003 (3)
N50.053 (4)0.051 (4)0.048 (4)0.023 (3)0.006 (3)0.012 (3)
C70.047 (4)0.024 (3)0.048 (4)0.013 (3)0.011 (3)0.004 (3)
Hg10.0623 (2)0.03300 (18)0.0642 (2)0.02039 (14)0.02216 (14)0.00926 (13)
Cl10.0659 (13)0.0379 (11)0.122 (2)0.0203 (10)0.0315 (12)0.0090 (11)
Cl20.0705 (14)0.104 (2)0.0654 (15)0.0260 (14)0.0016 (11)0.0254 (13)
O10.030 (2)0.039 (3)0.039 (3)0.0149 (19)0.0056 (18)0.0019 (19)
N30.040 (3)0.035 (3)0.038 (3)0.016 (2)0.007 (2)0.001 (2)
C190.030 (3)0.046 (4)0.042 (4)0.009 (3)0.000 (3)0.005 (3)
C130.036 (3)0.039 (4)0.041 (4)0.015 (3)0.011 (3)0.004 (3)
C140.034 (3)0.036 (4)0.034 (4)0.010 (3)0.002 (3)0.000 (3)
C180.041 (4)0.034 (4)0.036 (4)0.016 (3)0.008 (3)0.004 (3)
C90.037 (4)0.041 (4)0.049 (4)0.016 (3)0.012 (3)0.005 (3)
C110.034 (3)0.048 (4)0.043 (4)0.014 (3)0.005 (3)0.001 (3)
C100.035 (3)0.042 (4)0.036 (4)0.017 (3)0.012 (3)0.004 (3)
N20.040 (3)0.055 (4)0.050 (4)0.020 (3)0.002 (3)0.019 (3)
C150.031 (3)0.037 (4)0.035 (3)0.012 (3)0.007 (3)0.006 (3)
C160.035 (3)0.045 (4)0.039 (4)0.011 (3)0.004 (3)0.004 (3)
C120.039 (4)0.046 (4)0.050 (4)0.021 (3)0.008 (3)0.002 (3)
C210.057 (4)0.027 (4)0.065 (5)0.013 (3)0.031 (4)0.005 (3)
N10.035 (3)0.070 (5)0.055 (4)0.026 (3)0.000 (3)0.022 (3)
C230.065 (5)0.029 (4)0.065 (5)0.014 (3)0.027 (4)0.001 (3)
C200.042 (4)0.039 (4)0.041 (4)0.015 (3)0.007 (3)0.005 (3)
C40.071 (5)0.045 (5)0.053 (5)0.022 (4)0.021 (4)0.001 (4)
N40.045 (3)0.039 (3)0.044 (3)0.013 (3)0.017 (3)0.000 (3)
C220.049 (4)0.029 (3)0.040 (4)0.011 (3)0.011 (3)0.001 (3)
C250.057 (5)0.055 (5)0.059 (5)0.017 (4)0.027 (4)0.011 (4)
C170.045 (4)0.041 (4)0.042 (4)0.014 (3)0.003 (3)0.009 (3)
C30.094 (7)0.042 (5)0.071 (6)0.025 (5)0.040 (5)0.017 (4)
C80.035 (3)0.044 (4)0.043 (4)0.010 (3)0.011 (3)0.001 (3)
C10.072 (6)0.076 (7)0.062 (6)0.034 (5)0.014 (4)0.014 (5)
C240.068 (5)0.042 (5)0.072 (5)0.023 (4)0.025 (4)0.009 (4)
C260.055 (4)0.034 (4)0.050 (4)0.006 (3)0.019 (3)0.000 (3)
C20.096 (7)0.077 (7)0.060 (5)0.057 (6)0.032 (5)0.028 (5)
Geometric parameters (Å, º) top
N6—C11.330 (11)C11—C101.373 (9)
N6—C51.343 (10)C11—C121.375 (10)
C5—C41.372 (11)C11—H110.9300
C5—C61.520 (10)N2—N11.407 (8)
C6—N51.437 (10)C15—C161.385 (9)
C6—H6A0.9700C15—C201.388 (9)
C6—H6B0.9700C16—C171.368 (10)
N5—C71.373 (9)C16—H160.9300
N5—H50.8600C12—H120.9300
C7—C121.385 (10)C21—C221.500 (10)
C7—C81.397 (9)C21—H21A0.9700
Hg1—Cl12.373 (2)C21—H21B0.9700
Hg1—Cl22.451 (2)C23—C241.379 (11)
Hg1—N32.587 (6)C23—C221.383 (10)
Hg1—N42.275 (6)C23—H230.9300
Hg1—N6i2.745 (7)C20—H200.9300
O1—C131.350 (7)C4—C31.394 (12)
O1—C141.355 (7)C4—H40.9300
N3—C181.408 (8)N4—C221.338 (9)
N3—C211.440 (9)N4—C261.340 (9)
N3—H30.9100C25—C241.361 (12)
C19—C201.358 (9)C25—C261.378 (11)
C19—C181.390 (9)C25—H250.9300
C19—H190.9300C17—H170.9300
C13—N11.280 (9)C3—C21.354 (14)
C13—C101.446 (9)C3—H3A0.9300
C14—N21.284 (8)C8—H80.9300
C14—C151.452 (9)C1—C21.365 (14)
C18—C171.381 (10)C1—H10.9300
C9—C101.373 (10)C24—H240.9300
C9—C81.374 (10)C26—H260.9300
C9—H90.9300C2—H20.9300
C1—N6—C5117.3 (7)C16—C15—C20117.9 (6)
N6—C5—C4122.1 (7)C16—C15—C14122.2 (6)
N6—C5—C6114.8 (6)C20—C15—C14119.9 (6)
C4—C5—C6123.0 (7)C17—C16—C15120.8 (6)
N5—C6—C5114.9 (6)C17—C16—H16119.6
N5—C6—H6A108.5C15—C16—H16119.6
C5—C6—H6A108.5C11—C12—C7120.7 (6)
N5—C6—H6B108.5C11—C12—H12119.6
C5—C6—H6B108.5C7—C12—H12119.6
H6A—C6—H6B107.5N3—C21—C22112.4 (6)
C7—N5—C6122.8 (6)N3—C21—H21A109.1
C7—N5—H5118.6C22—C21—H21A109.1
C6—N5—H5118.6N3—C21—H21B109.1
N5—C7—C12120.0 (6)C22—C21—H21B109.1
N5—C7—C8121.8 (6)H21A—C21—H21B107.9
C12—C7—C8118.1 (6)C13—N1—N2106.8 (5)
N4—Hg1—Cl1145.19 (16)C24—C23—C22119.5 (7)
N4—Hg1—Cl299.31 (16)C24—C23—H23120.3
Cl1—Hg1—Cl2114.87 (10)C22—C23—H23120.3
N4—Hg1—N370.81 (18)C19—C20—C15121.1 (6)
Cl1—Hg1—N398.44 (13)C19—C20—H20119.5
Cl2—Hg1—N395.30 (13)C15—C20—H20119.5
N4—Hg1—N6i86.73 (19)C5—C4—C3118.9 (8)
Cl1—Hg1—N6i84.60 (15)C5—C4—H4120.6
Cl2—Hg1—N6i115.31 (15)C3—C4—H4120.6
N3—Hg1—N6i144.82 (18)C22—N4—C26119.0 (6)
C13—O1—C14103.7 (5)C22—N4—Hg1117.2 (4)
C18—N3—C21120.2 (5)C26—N4—Hg1123.8 (5)
C18—N3—Hg1110.2 (4)N4—C22—C23120.9 (7)
C21—N3—Hg198.4 (4)N4—C22—C21117.1 (6)
C18—N3—H3109.1C23—C22—C21122.0 (6)
C21—N3—H3109.1C24—C25—C26118.6 (7)
Hg1—N3—H3109.1C24—C25—H25120.7
C20—C19—C18121.1 (6)C26—C25—H25120.7
C20—C19—H19119.5C16—C17—C18121.2 (6)
C18—C19—H19119.5C16—C17—H17119.4
N1—C13—O1111.7 (6)C18—C17—H17119.4
N1—C13—C10128.3 (6)C2—C3—C4118.9 (8)
O1—C13—C10120.0 (6)C2—C3—H3A120.6
N2—C14—O1112.0 (6)C4—C3—H3A120.6
N2—C14—C15130.1 (6)C9—C8—C7119.8 (6)
O1—C14—C15117.8 (5)C9—C8—H8120.1
C17—C18—C19117.8 (6)C7—C8—H8120.1
C17—C18—N3124.0 (6)N6—C1—C2124.0 (9)
C19—C18—N3118.1 (6)N6—C1—H1118.0
C10—C9—C8121.6 (6)C2—C1—H1118.0
C10—C9—H9119.2C25—C24—C23119.4 (7)
C8—C9—H9119.2C25—C24—H24120.3
C10—C11—C12120.9 (6)C23—C24—H24120.3
C10—C11—H11119.5N4—C26—C25122.4 (7)
C12—C11—H11119.5N4—C26—H26118.8
C11—C10—C9118.5 (6)C25—C26—H26118.8
C11—C10—C13120.4 (6)C3—C2—C1118.7 (9)
C9—C10—C13121.0 (6)C3—C2—H2120.6
C14—N2—N1105.8 (5)C1—C2—H2120.6
C1—N6—C5—C41.7 (11)C8—C7—C12—C114.7 (11)
C1—N6—C5—C6177.0 (7)C18—N3—C21—C22170.7 (6)
N6—C5—C6—N5168.7 (6)Hg1—N3—C21—C2251.3 (6)
C4—C5—C6—N512.7 (11)O1—C13—N1—N20.0 (8)
C5—C6—N5—C777.9 (9)C10—C13—N1—N2179.9 (7)
C6—N5—C7—C12169.2 (7)C14—N2—N1—C130.4 (8)
C6—N5—C7—C811.5 (11)C18—C19—C20—C150.4 (11)
N4—Hg1—N3—C18162.2 (4)C16—C15—C20—C193.5 (10)
Cl1—Hg1—N3—C1852.0 (4)C14—C15—C20—C19176.2 (6)
Cl2—Hg1—N3—C1864.2 (4)N6—C5—C4—C30.4 (11)
N6i—Hg1—N3—C18144.6 (4)C6—C5—C4—C3179.0 (7)
N4—Hg1—N3—C2135.6 (4)Cl1—Hg1—N4—C2293.9 (5)
Cl1—Hg1—N3—C21178.6 (4)Cl2—Hg1—N4—C2275.3 (5)
Cl2—Hg1—N3—C2162.4 (4)N3—Hg1—N4—C2217.1 (5)
N6i—Hg1—N3—C2188.8 (5)N6i—Hg1—N4—C22169.6 (5)
C14—O1—C13—N10.3 (8)Cl1—Hg1—N4—C2686.1 (6)
C14—O1—C13—C10179.8 (6)Cl2—Hg1—N4—C26104.7 (5)
C13—O1—C14—N20.6 (7)N3—Hg1—N4—C26162.9 (6)
C13—O1—C14—C15176.6 (6)N6i—Hg1—N4—C2610.5 (6)
C20—C19—C18—C173.9 (11)C26—N4—C22—C233.9 (10)
C20—C19—C18—N3173.1 (6)Hg1—N4—C22—C23176.2 (5)
C21—N3—C18—C1728.4 (10)C26—N4—C22—C21174.5 (6)
Hg1—N3—C18—C1784.8 (7)Hg1—N4—C22—C215.4 (8)
C21—N3—C18—C19154.7 (7)C24—C23—C22—N41.9 (11)
Hg1—N3—C18—C1992.1 (6)C24—C23—C22—C21176.4 (7)
C12—C11—C10—C91.6 (11)N3—C21—C22—N444.7 (9)
C12—C11—C10—C13178.6 (7)N3—C21—C22—C23136.9 (7)
C8—C9—C10—C112.0 (11)C15—C16—C17—C180.3 (11)
C8—C9—C10—C13178.2 (6)C19—C18—C17—C163.6 (11)
N1—C13—C10—C115.6 (12)N3—C18—C17—C16173.3 (6)
O1—C13—C10—C11174.5 (6)C5—C4—C3—C23.3 (12)
N1—C13—C10—C9174.6 (8)C10—C9—C8—C70.9 (11)
O1—C13—C10—C95.3 (10)N5—C7—C8—C9175.1 (7)
O1—C14—N2—N10.6 (8)C12—C7—C8—C94.3 (10)
C15—C14—N2—N1176.1 (7)C5—N6—C1—C20.9 (13)
N2—C14—C15—C162.9 (12)C26—C25—C24—C230.9 (13)
O1—C14—C15—C16179.4 (6)C22—C23—C24—C250.6 (12)
N2—C14—C15—C20176.7 (7)C22—N4—C26—C253.5 (11)
O1—C14—C15—C200.2 (9)Hg1—N4—C26—C25176.6 (6)
C20—C15—C16—C173.8 (10)C24—C25—C26—N41.1 (12)
C14—C15—C16—C17175.8 (7)C4—C3—C2—C14.1 (13)
C10—C11—C12—C71.8 (11)N6—C1—C2—C32.0 (15)
N5—C7—C12—C11174.7 (7)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2ii0.912.363.191 (8)152
N5—H5···Cl1iii0.862.683.517 (7)166
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C26H22N6O)2]
Mr1411.98
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5426 (19), 9.945 (2), 16.533 (4)
α, β, γ (°)83.773 (3), 80.001 (3), 67.671 (2)
V3)1278.2 (5)
Z1
Radiation typeMo Kα
µ (mm1)6.26
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.113, 0.153
No. of measured, independent and
observed [I > 2σ(I)] reflections
6681, 4652, 3878
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections4652
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.20, 0.84

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Hg1—Cl12.373 (2)Hg1—N42.275 (6)
Hg1—Cl22.451 (2)Hg1—N6i2.745 (7)
Hg1—N32.587 (6)
N4—Hg1—Cl1145.19 (16)Cl2—Hg1—N395.30 (13)
N4—Hg1—Cl299.31 (16)N4—Hg1—N6i86.73 (19)
Cl1—Hg1—Cl2114.87 (10)Cl1—Hg1—N6i84.60 (15)
N4—Hg1—N370.81 (18)Cl2—Hg1—N6i115.31 (15)
Cl1—Hg1—N398.44 (13)N3—Hg1—N6i144.82 (18)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2ii0.912.363.191 (8)152.4
N5—H5···Cl1iii0.862.683.517 (7)165.5
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (grant No. 20671060), and Shangdong Natural Science Foundation, China (grant Nos. J06D05 and 2006BS04040).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Ma, J.-P. & Huang, R.-Q. (2003). Inorg. Chem. 42, 294–300.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGallagher, J. F., Alyea, E. C. & Ferguson, G. (1999). Croat. Chem. Acta, 72, 243–250.  CAS Google Scholar
First citationGrupce, O., Jouanouski, G., Kaitner, B. & Naumov, P. (1999). Croat. Chem. Acta, 72, 465–476.  CAS Google Scholar
First citationRen, Z.-J., Jiang, E. & Zhou, H.-B. (1995). Youji Huaxue, 15, 218–220.  CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds