metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-methyl­piperidinium) hexa­chlorido­stannate(IV)

aDepartment of Chemistry, GC University, Faisalabad, Pakistan, bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and cSchool of Chemistry, The University of Manchester, Manchester M13 9PL, England
*Correspondence e-mail: drsa54@yahoo.com

(Received 15 February 2008; accepted 17 March 2008; online 29 March 2008)

The crystal structure of the title compound, (C6H14N)2[SnCl6], is built of 4-methyl­piperidinium cations, occupying special positions on the mirror plane, and hexa­chloridostannate(IV) anions on a special position of 2/m symmetry. The ions are linked via N—H⋯Cl hydrogen bonds into chains running along the b axis.

Related literature

For related literature, see: Shahzadi, Ali & Fettouhi (2006[Shahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178-m1180.]); Shahzadi, Ali, Bhatti et al. (2006[Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797-1802.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N)2[SnCl6]

  • Mr = 531.75

  • Orthorhombic, P n n m

  • a = 13.123 (5) Å

  • b = 7.722 (5) Å

  • c = 10.500 (5) Å

  • V = 1064.0 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 (2) K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 7975 measured reflections

  • 1153 independent reflections

  • 1055 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.040

  • S = 1.04

  • 1153 reflections

  • 65 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.88 (3) 2.63 (3) 3.258 (3) 129 (2)
N1—H2N⋯Cl2i 0.84 (3) 2.72 (2) 3.413 (2) 141.6 (5)
N1—H2N⋯Cl2ii 0.84 (3) 2.72 (2) 3.413 (2) 141.6 (5)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report here the crystal structure of the title compound (I) as shown in Fig. 1. The Sn1—Cl distances span the range of 2.417 (1)–2.431 (1) Å; the N1—C1 bond is 1.500 (2) Å. The N—H···Cl bonds link the ions into chains along the b axis (Table 1, Fig. 2).

Related literature top

For related literature, see: Shahzadi, Ali & Fettouhi (2006); Shahzadi, Ali, Bhatti et al. (2006).

Experimental top

The 4-methyl-1-piperidine carbodithioic acid (3.0 g, 17.1 mmol) and tin tetrachloride pentahydrate (5.99 g, 17.1 mmol) were added to 100 ml of dry methanol in round bottom flask and stirred for 6 h. The resulting clear solution was evaporated at room temperature. Colourless crystals of the title compound were obtained after recrystallization in chlorofom and n-hexane (1:1). Yield: 64%. m.p. 228°C.

Refinement top

H atoms bonded to C1—C3 were included in riding motion approximation in calculated positions with C—H distances of 0.99 Å and Uiso 1.2 times those of the parent atoms; those bonded to C4 and N1 were located in a difference Fourier map and refined isotropically with Uiso 1.2 times those of the parent atoms (C4 - H distances 0.93 (2) and 0.95 (3) Å and N1 - H 0.84 (3) and 0.88 (3) Å).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of (I) with displacement ellipsoids drawn at the 50% probability level. The unlabelled atoms of the 4-methylpiperidinium cation are symmetry related (symmetry code x, y, -z). The unlabelled Cl atoms are symmetry related to Cl1 (symmetry code -x, 2 - y, -z) and Cl2 (symmetry codes -x, 2 - y, -z; -x, 2 - y, z; x, y, -z).
[Figure 2] Fig. 2. Fragment of the crystal packing of (I) showing chain along the b axis, viewed approximately along the diagonal of the bc-plane; H-bonds are shown as dashed lines.
Bis(4-methylpiperidinium) hexachloridostannate top
Crystal data top
(C6H14N)2[SnCl6]F(000) = 532
Mr = 531.75Dx = 1.660 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P22nCell parameters from 3718 reflections
a = 13.123 (5) Åθ = 2.5–26.3°
b = 7.722 (5) ŵ = 1.95 mm1
c = 10.500 (5) ÅT = 100 K
V = 1064.0 (9) Å3Pyramidal, colourless
Z = 20.25 × 0.25 × 0.25 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1055 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 26.3°, θmin = 2.5°
ϕ and ω scansh = 1616
7975 measured reflectionsk = 99
1153 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0164P)2]
where P = (Fo2 + 2Fc2)/3
1153 reflections(Δ/σ)max < 0.001
65 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
(C6H14N)2[SnCl6]V = 1064.0 (9) Å3
Mr = 531.75Z = 2
Orthorhombic, PnnmMo Kα radiation
a = 13.123 (5) ŵ = 1.95 mm1
b = 7.722 (5) ÅT = 100 K
c = 10.500 (5) Å0.25 × 0.25 × 0.25 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1055 reflections with I > 2σ(I)
7975 measured reflectionsRint = 0.050
1153 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.040H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.78 e Å3
1153 reflectionsΔρmin = 0.29 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00001.00000.00000.01428 (9)
Cl10.18119 (5)0.94377 (8)0.00000.02127 (15)
Cl20.02412 (3)0.77582 (6)0.15973 (4)0.02279 (12)
N10.16716 (17)0.5226 (3)0.00000.0187 (5)
H1N0.128 (2)0.615 (4)0.00000.022*
H2N0.130 (2)0.434 (4)0.00000.022*
C10.23016 (14)0.5228 (2)0.11919 (17)0.0202 (4)
H1C0.18500.51710.19460.024*
H1D0.27010.63130.12420.024*
C20.30167 (13)0.3686 (2)0.11902 (17)0.0194 (4)
H2A0.26110.26070.12350.023*
H2B0.34560.37360.19560.023*
C30.36885 (19)0.3640 (3)0.00000.0194 (6)
H30.41300.46960.00000.023*
C40.4374 (2)0.2055 (4)0.00000.0271 (7)
H4A0.4780 (15)0.200 (3)0.0726 (19)0.032*
H4B0.399 (2)0.102 (4)0.00000.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01250 (13)0.01126 (13)0.01907 (14)0.00031 (9)0.0000.000
Cl10.0136 (3)0.0153 (3)0.0349 (4)0.0005 (2)0.0000.000
Cl20.0214 (2)0.0228 (2)0.0242 (3)0.00568 (18)0.00453 (18)0.00756 (19)
N10.0165 (11)0.0122 (12)0.0274 (13)0.0012 (9)0.0000.000
C10.0205 (10)0.0199 (10)0.0203 (10)0.0007 (8)0.0011 (7)0.0040 (8)
C20.0189 (10)0.0200 (10)0.0192 (10)0.0010 (8)0.0028 (8)0.0011 (8)
C30.0151 (13)0.0189 (14)0.0241 (15)0.0003 (10)0.0000.000
C40.0239 (16)0.0321 (18)0.0252 (17)0.0102 (13)0.0000.000
Geometric parameters (Å, º) top
Sn1—Cl12.4170 (11)C1—H1C0.9900
Sn1—Cl1i2.4170 (11)C1—H1D0.9900
Sn1—Cl2ii2.4310 (11)C2—C31.530 (2)
Sn1—Cl2iii2.4310 (11)C2—H2A0.9900
Sn1—Cl2i2.4310 (11)C2—H2B0.9900
Sn1—Cl22.4310 (11)C3—C41.519 (4)
N1—C1iii1.500 (2)C3—C2iii1.530 (2)
N1—C11.500 (2)C3—H31.0000
N1—H1N0.88 (3)C4—H4A0.931 (19)
N1—H2N0.84 (3)C4—H4B0.95 (3)
C1—C21.516 (2)
Cl1—Sn1—Cl1i180.000 (5)N1—C1—C2109.83 (15)
Cl1—Sn1—Cl2ii89.990 (19)N1—C1—H1C109.7
Cl1i—Sn1—Cl2ii90.010 (19)C2—C1—H1C109.7
Cl1—Sn1—Cl2iii90.010 (19)N1—C1—H1D109.7
Cl1i—Sn1—Cl2iii89.990 (19)C2—C1—H1D109.7
Cl2ii—Sn1—Cl2iii180.0H1C—C1—H1D108.2
Cl1—Sn1—Cl2i89.990 (19)C1—C2—C3112.08 (16)
Cl1i—Sn1—Cl2i90.010 (19)C1—C2—H2A109.2
Cl2ii—Sn1—Cl2i87.24 (5)C3—C2—H2A109.2
Cl2iii—Sn1—Cl2i92.76 (5)C1—C2—H2B109.2
Cl1—Sn1—Cl290.010 (19)C3—C2—H2B109.2
Cl1i—Sn1—Cl289.990 (19)H2A—C2—H2B107.9
Cl2ii—Sn1—Cl292.76 (5)C4—C3—C2iii111.10 (15)
Cl2iii—Sn1—Cl287.24 (5)C4—C3—C2111.10 (15)
Cl2i—Sn1—Cl2180.0C2iii—C3—C2109.6 (2)
C1iii—N1—C1113.1 (2)C4—C3—H3108.3
C1iii—N1—H1N108.7 (8)C2iii—C3—H3108.3
C1—N1—H1N108.7 (8)C2—C3—H3108.3
C1iii—N1—H2N108.6 (10)C3—C4—H4A112.1 (14)
C1—N1—H2N108.6 (10)C3—C4—H4B111.2 (18)
H1N—N1—H2N109 (3)H4A—C4—H4B105.6 (17)
C1iii—N1—C1—C256.8 (2)C1—C2—C3—C4178.20 (18)
N1—C1—C2—C355.7 (2)C1—C2—C3—C2iii55.1 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.88 (3)2.63 (3)3.258 (3)129 (2)
N1—H2N···Cl2iv0.84 (3)2.72 (2)3.413 (2)142 (1)
N1—H2N···Cl2v0.84 (3)2.72 (2)3.413 (2)142 (1)
Symmetry codes: (iv) x, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H14N)2[SnCl6]
Mr531.75
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)100
a, b, c (Å)13.123 (5), 7.722 (5), 10.500 (5)
V3)1064.0 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7975, 1153, 1055
Rint0.050
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.040, 1.04
No. of reflections1153
No. of parameters65
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.88 (3)2.63 (3)3.258 (3)129 (2)
N1—H2N···Cl2i0.84 (3)2.72 (2)3.413 (2)141.6 (5)
N1—H2N···Cl2ii0.84 (3)2.72 (2)3.413 (2)141.6 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

SA is thankful to Quaid-i-Azam University, Islamabad, Pakistan, for financial support.

References

First citationBruker (2001). SMARTGoogle Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797–1802.  Web of Science CSD CrossRef CAS Google Scholar
First citationShahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178–m1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds