organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-2-methyl­quinoline monohydrate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bWeifang Institute of Supervision and Inspection of Product Quality, Weifang 261031, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 1 May 2008; accepted 3 May 2008; online 10 May 2008)

The crystal structure of the title compound, C10H10N2·H2O, is stabilized by inter­molecular O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For related literature, see: Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.], 2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.]); Tai, Yin & Feng (2007[Tai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398-400.]); Tai, Yin & Hao (2007[Tai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061-m1062.]); Tai, Yin et al. (2007[Tai, X. S., Yin, J., Feng, Y. M. & Kong, F. Y. (2007). Chin. J. Inorg. Chem. 23, 1812-1814.][Tai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398-400.]); Tai & Feng (2008[Tai, X. S. & Feng, Y. M. (2008). Acta Cryst. E64, o707.]); Wang et al. (2007[Wang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2·H2O

  • Mr = 176.22

  • Orthorhombic, P n a 21

  • a = 4.7432 (8) Å

  • b = 13.9070 (13) Å

  • c = 14.5129 (16) Å

  • V = 957.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.43 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.975

  • 3925 measured reflections

  • 882 independent reflections

  • 716 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.04

  • 882 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.85 1.94 2.791 (3) 174
O1—H2⋯N1ii 0.85 1.96 2.805 (3) 171
N2—H2A⋯O1iii 0.86 2.10 2.947 (4) 168
N2—H2B⋯N2iv 0.86 2.51 3.321 (4) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x+1, y, z; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the coordination chemistry of ligands containing nitrogen (Tai et al., 2003; Tai, Yin & Feng, 2007; Tai, Yin, Feng & Kong, 2007; Tai, Yin & Hao, 2007; Tai & Feng, 2008; Tai, Feng & Zhang, 2008; Wang et al., 2007), we now report the structure of the title compound, (I), (Fig. 1).

In the molecule of (I), the geometrical parameters for (I) are normal. The packing is stabilized by the intermolecular O—H···N, N—H···O and N—H···N hydrogen bonds (Table 1).

Related literature top

For related literature, see: Tai et al. (2003); Tai et al. (2008); Tai, Yin & Feng (2007); Tai, Yin & Hao (2007); Tai, Yin et al. (2007); Tai & Feng (2008); Wang et al. (2007).

Experimental top

1 mmol of Ethyl benzoylacetate was added to a solution of 4-amino-2-methylquinoline (1 mmol) in 10 ml of 95% ethanol. The mixture was stirred for 2 h at refluxing temperature. Evaporating some ethanol, clear blocks of (I) were obtained after one weeks.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.852 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids.
4-Amino-2-methylquinoline monohydrate top
Crystal data top
C10H10N2·H2OF(000) = 376
Mr = 176.22Dx = 1.223 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1365 reflections
a = 4.7432 (8) Åθ = 2.8–23.5°
b = 13.9070 (13) ŵ = 0.08 mm1
c = 14.5129 (16) ÅT = 298 K
V = 957.3 (2) Å3Block, colourless
Z = 40.43 × 0.35 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
882 independent reflections
Radiation source: fine-focus sealed tube716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 55
Tmin = 0.966, Tmax = 0.975k = 1615
3925 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.1333P]
where P = (Fo2 + 2Fc2)/3
882 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.10 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C10H10N2·H2OV = 957.3 (2) Å3
Mr = 176.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 4.7432 (8) ŵ = 0.08 mm1
b = 13.9070 (13) ÅT = 298 K
c = 14.5129 (16) Å0.43 × 0.35 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
716 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.975Rint = 0.029
3925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.10 e Å3
882 reflectionsΔρmin = 0.11 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0728 (5)0.56239 (17)0.32460 (17)0.0508 (7)
N20.2819 (6)0.33360 (19)0.49988 (18)0.0612 (7)
H2A0.19960.32880.55250.073*
H2B0.40340.29110.48320.073*
O10.9245 (4)0.69712 (15)0.18915 (16)0.0582 (6)
H11.07020.73260.19140.070*
H20.95100.65520.23090.070*
C10.2458 (8)0.6300 (2)0.4362 (3)0.0672 (9)
H1A0.24910.68020.39070.101*
H1B0.18910.65630.49450.101*
H1C0.43060.60240.44170.101*
C20.0410 (6)0.5538 (2)0.4074 (2)0.0488 (8)
C30.0273 (7)0.4782 (2)0.46651 (19)0.0485 (7)
H30.06000.47460.52380.058*
C40.2193 (6)0.4091 (2)0.44254 (18)0.0452 (7)
C50.3470 (6)0.4156 (2)0.35341 (19)0.0429 (7)
C60.5474 (7)0.3508 (2)0.3196 (2)0.0523 (8)
H60.60300.29920.35620.063*
C70.6634 (8)0.3615 (3)0.2340 (2)0.0608 (9)
H70.79520.31750.21240.073*
C80.5828 (7)0.4388 (3)0.1796 (3)0.0631 (9)
H80.66240.44640.12150.076*
C90.3892 (7)0.5037 (2)0.20989 (19)0.0568 (9)
H90.33820.55490.17220.068*
C100.2654 (6)0.4944 (2)0.29716 (19)0.0455 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0487 (14)0.0540 (14)0.0498 (15)0.0009 (12)0.0061 (12)0.0071 (12)
N20.0754 (19)0.0656 (16)0.0428 (14)0.0058 (15)0.0043 (13)0.0133 (12)
O10.0614 (12)0.0590 (11)0.0544 (12)0.0011 (11)0.0117 (12)0.0083 (10)
C10.062 (2)0.066 (2)0.074 (2)0.0027 (18)0.0037 (19)0.0011 (17)
C20.0423 (17)0.0539 (17)0.0502 (18)0.0078 (14)0.0049 (14)0.0016 (15)
C30.0465 (16)0.0590 (18)0.0401 (16)0.0100 (15)0.0010 (13)0.0024 (14)
C40.0428 (17)0.0520 (16)0.0406 (15)0.0113 (14)0.0062 (13)0.0053 (13)
C50.0404 (15)0.0502 (16)0.0381 (14)0.0100 (13)0.0040 (12)0.0022 (11)
C60.0500 (17)0.0549 (17)0.0519 (18)0.0033 (14)0.0021 (15)0.0059 (14)
C70.056 (2)0.070 (2)0.056 (2)0.0027 (16)0.0065 (17)0.0026 (16)
C80.059 (2)0.084 (2)0.0464 (16)0.0094 (18)0.0060 (17)0.0093 (18)
C90.0569 (18)0.069 (2)0.0440 (19)0.0077 (18)0.0041 (14)0.0147 (14)
C100.0416 (15)0.0540 (17)0.0408 (15)0.0100 (13)0.0067 (13)0.0042 (13)
Geometric parameters (Å, º) top
N1—C21.322 (4)C3—H30.9300
N1—C101.374 (4)C4—C51.431 (4)
N2—C41.372 (4)C5—C61.399 (4)
N2—H2A0.8600C5—C101.420 (4)
N2—H2B0.8600C6—C71.367 (5)
O1—H10.8500C6—H60.9300
O1—H20.8499C7—C81.387 (5)
C1—C21.497 (5)C7—H70.9300
C1—H1A0.9600C8—C91.361 (5)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.402 (4)
C2—C31.396 (4)C9—H90.9300
C3—C41.369 (4)
C2—N1—C10118.2 (2)N2—C4—C5120.3 (3)
C4—N2—H2A120.0C6—C5—C10118.7 (3)
C4—N2—H2B120.0C6—C5—C4124.3 (3)
H2A—N2—H2B120.0C10—C5—C4116.9 (3)
H1—O1—H2104.5C7—C6—C5121.4 (3)
C2—C1—H1A109.5C7—C6—H6119.3
C2—C1—H1B109.5C5—C6—H6119.3
H1A—C1—H1B109.5C6—C7—C8119.4 (3)
C2—C1—H1C109.5C6—C7—H7120.3
H1A—C1—H1C109.5C8—C7—H7120.3
H1B—C1—H1C109.5C9—C8—C7121.1 (3)
N1—C2—C3122.1 (3)C9—C8—H8119.4
N1—C2—C1117.0 (3)C7—C8—H8119.4
C3—C2—C1120.8 (3)C8—C9—C10120.8 (3)
C4—C3—C2121.8 (3)C8—C9—H9119.6
C4—C3—H3119.1C10—C9—H9119.6
C2—C3—H3119.1N1—C10—C9118.4 (3)
C3—C4—N2121.8 (3)N1—C10—C5123.1 (3)
C3—C4—C5117.9 (3)C9—C10—C5118.5 (3)
C10—N1—C2—C30.4 (4)C5—C6—C7—C80.6 (5)
C10—N1—C2—C1178.8 (3)C6—C7—C8—C90.4 (5)
N1—C2—C3—C40.9 (4)C7—C8—C9—C100.1 (5)
C1—C2—C3—C4178.3 (3)C2—N1—C10—C9179.3 (2)
C2—C3—C4—N2178.6 (3)C2—N1—C10—C50.1 (4)
C2—C3—C4—C51.0 (4)C8—C9—C10—N1179.5 (3)
C3—C4—C5—C6179.6 (3)C8—C9—C10—C50.1 (4)
N2—C4—C5—C62.8 (4)C6—C5—C10—N1179.2 (3)
C3—C4—C5—C100.7 (4)C4—C5—C10—N10.2 (4)
N2—C4—C5—C10178.3 (2)C6—C5—C10—C90.1 (4)
C10—C5—C6—C70.5 (4)C4—C5—C10—C9179.1 (2)
C4—C5—C6—C7179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.851.942.791 (3)174
O1—H2···N1ii0.851.962.805 (3)171
N2—H2A···O1iii0.862.102.947 (4)168
N2—H2B···N2iv0.862.513.321 (4)158
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H10N2·H2O
Mr176.22
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)4.7432 (8), 13.9070 (13), 14.5129 (16)
V3)957.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.966, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
3925, 882, 716
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.05
No. of reflections882
No. of parameters119
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.11

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.851.942.791 (3)174
O1—H2···N1ii0.851.962.805 (3)171
N2—H2A···O1iii0.862.102.947 (4)168
N2—H2B···N2iv0.862.513.321 (4)158
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60), the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X. S. & Feng, Y. M. (2008). Acta Cryst. E64, o707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398–400.  CAS Google Scholar
First citationTai, X. S., Yin, J., Feng, Y. M. & Kong, F. Y. (2007). Chin. J. Inorg. Chem. 23, 1812–1814.  CAS Google Scholar
First citationTai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061–m1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds