organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1036-o1037

2,4,6-Tris(1-oxo-2-pyridylsulfanylmeth­yl)mesitylene methanol solvate

aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamil Nadu, India, bDepartment of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 1 May 2008; accepted 3 May 2008; online 10 May 2008)

In the title compound, C27H27N3O3S3·CH4O, the dihedral angles formed by the mesitylene ring with the three oxopyridyl rings are 89.6 (1), 75.5 (1) and 80.69 (1)°, indicating that all three are nearly perpendicular to the mesitylene ring. Intra­molecular C—H⋯S hydrogen bonds generate S(6) ring motifs. The crystal structure is stabilized by intra­molecular C—H⋯S and inter­molecular C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

Related literature

For related literature on the biological activity of N-oxides see: Lobana et al., (1989[Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.]); Symons & West (1985[Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379-381.]); Katsuyuki et al. (1991[Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099-5100.]); Bovin et al. (1992[Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145-150.]); Leonard et al.(1955[Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261-264.]). For related literature on N-oxides, see: Jebas et al. (2005[Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.]); Ravindran et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]); Jebas et al. (2005); Ravindran et al. (2008[Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27N3O3S3·CH4O

  • Mr = 569.74

  • Monoclinic, P 21 /c

  • a = 11.9644 (17) Å

  • b = 14.9129 (8) Å

  • c = 15.467 (2) Å

  • β = 91.733 (7)°

  • V = 2758.4 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.78 mm−1

  • T = 298 (2) K

  • 0.52 × 0.42 × 0.06 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.296, Tmax = 0.842

  • 5226 measured reflections

  • 5226 independent reflections

  • 4156 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.150

  • S = 1.08

  • 5226 reflections

  • 347 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1L—H1L⋯O27 0.82 2.41 2.804 (7) 110
C16—H16A⋯O36i 0.96 2.47 3.348 (4) 152
C16—H16B⋯S20 0.96 2.68 3.420 (3) 135
C18—H18B⋯S29 0.96 2.79 3.515 (3) 133
C25—H25⋯O7ii 0.93 2.44 3.147 (5) 133
C28—H28A⋯O7i 0.97 2.48 3.397 (3) 157
C31—H31⋯O27iii 0.93 2.35 3.107 (4) 139
C2—H2⋯Cg1iv 0.93 2.91 3.774 (3) 154
C4—H4⋯Cg1v 0.93 2.67 3.377 (3) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg1 is the centroid of the C10–C15 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al.,1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al.,1991; Bovin et al. 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al.,1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran et al., 2008). The N–O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N–oxides (Allen et al.,1987).

The meistylene ring is planar with the maximum deviation from planarity being -0.036 (1) Å. The dihedral angle formed by the meistylene ring with the oxopyridinium rings (C1–C5/N6) 89.6 (1) °; (C21–C25/N26) 75.5 (1) ° and (C30–C34/N35) 80.69 (1) ° respectively, indicating that all the three oxopyridinium rings are perpendicular to the meistylene ring.

Intramolecular C—H···S hydrogen bonds generate S(6)S(6) ring motifs. The crystal structure is stabilized by intramolecular C—H···S and intermolecular C—H··· O hydrogen bonds and weak C—H···π interactions (Table 1, where Cg1 is the centroid of the ring C10-C15).

Related literature top

For related literature on the biological activity of N-oxides see: Lobana et al., (1989); Symons & West (1985); Katsuyuki et al. (1991); Bovin et al. (1992); Leonard et al.(1955). For related literature on N-oxides see: Jebas et al. (2005); Ravindran et al. (2008). For bond-length data, see: Allen et al. (1987); Jebas et al. (2005); Ravindran et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 is the centroid of the ring C10–C15.

Experimental top

A mixture of tris(bromomethyl)mesitylene (0.399 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.448 g, 3 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.494 g, 92%). The compound was recrystallized from chloroform-methanol (1:2 v/v).

Refinement top

H atoms were positioned geometrically [C—H = 0.93 (aromatic), 0.96 Å (methyl) 0.97 Å (methylene), and 0.82Å O—H] and refined using a riding model, with Uiso(H) = 1.2 or -1.5Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering scheme.
2,4,6-Tris(1-oxo-2-pyridylsulfanylmethyl)mesitylene methanol solvate top
Crystal data top
C27H27N3O3S3·CH4OF(000) = 1200
Mr = 569.74Dx = 1.372 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.9644 (17) Åθ = 61–69°
b = 14.9129 (8) ŵ = 2.78 mm1
c = 15.467 (2) ÅT = 298 K
β = 91.733 (7)°Block, colourless
V = 2758.4 (6) Å30.52 × 0.42 × 0.06 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
4156 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0
Graphite monochromatorθmax = 69.9°, θmin = 3.7°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 180
Tmin = 0.296, Tmax = 0.842l = 1818
5226 measured reflections3 standard reflections every 60 min
5226 independent reflections intensity decay: 3%
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.7123P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.49 e Å3
5226 reflectionsΔρmin = 0.32 e Å3
347 parameters
Crystal data top
C27H27N3O3S3·CH4OV = 2758.4 (6) Å3
Mr = 569.74Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.9644 (17) ŵ = 2.78 mm1
b = 14.9129 (8) ÅT = 298 K
c = 15.467 (2) Å0.52 × 0.42 × 0.06 mm
β = 91.733 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4156 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0
Tmin = 0.296, Tmax = 0.8423 standard reflections every 60 min
5226 measured reflections intensity decay: 3%
5226 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
5226 reflectionsΔρmin = 0.32 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3585 (2)0.25409 (17)0.03619 (16)0.0411 (6)
C20.4031 (2)0.2831 (2)0.11233 (17)0.0509 (7)
H20.44150.33720.1140.061*
C30.3906 (3)0.2318 (2)0.18594 (19)0.0595 (8)
H30.41890.25160.23790.071*
C40.3357 (3)0.1508 (2)0.1818 (2)0.0627 (8)
H40.32830.11490.23070.075*
C50.2921 (3)0.1234 (2)0.1054 (2)0.0593 (8)
H50.25520.06860.10280.071*
N60.30179 (19)0.17480 (15)0.03383 (15)0.0475 (5)
O70.2579 (2)0.15045 (15)0.03880 (14)0.0660 (6)
S80.36161 (6)0.30782 (4)0.06449 (4)0.04599 (19)
C90.4460 (2)0.40587 (17)0.04115 (15)0.0442 (6)
H9A0.52030.38790.02450.053*
H9B0.41170.44040.00570.053*
C100.4525 (2)0.46111 (16)0.12348 (15)0.0380 (5)
C110.3677 (2)0.52357 (17)0.13909 (16)0.0407 (5)
C120.3725 (2)0.57310 (16)0.21599 (16)0.0401 (5)
C130.4580 (2)0.55854 (16)0.27863 (16)0.0401 (5)
C140.5453 (2)0.49992 (16)0.25966 (15)0.0384 (5)
C150.5413 (2)0.44950 (16)0.18286 (15)0.0384 (5)
C160.2719 (3)0.5372 (2)0.07464 (19)0.0551 (7)
H16A0.28810.58710.03780.083*
H16B0.20470.54910.10490.083*
H16C0.26210.48410.04010.083*
C170.4548 (3)0.6036 (2)0.36637 (19)0.0588 (8)
H17A0.49660.65850.36520.088*
H17B0.4870.56450.40960.088*
H17C0.37860.61640.37990.088*
C180.6333 (3)0.3827 (2)0.16668 (19)0.0535 (7)
H18A0.60670.33840.1260.08*
H18B0.65520.3540.22010.08*
H18C0.69640.41330.14370.08*
C190.2853 (2)0.64413 (18)0.2303 (2)0.0489 (6)
H19A0.26880.67580.17660.059*
H19B0.3130.68720.27280.059*
S200.15895 (7)0.59076 (5)0.26844 (6)0.0598 (2)
C210.0714 (2)0.6832 (2)0.2755 (2)0.0534 (7)
C220.0959 (3)0.7726 (2)0.2634 (2)0.0627 (8)
H220.1670.78910.24650.075*
C230.0164 (3)0.8378 (3)0.2760 (3)0.0754 (10)
H230.03330.8980.26740.09*
C240.0876 (3)0.8128 (3)0.3012 (3)0.0837 (12)
H240.14120.85610.31210.1*
C250.1127 (3)0.7240 (3)0.3104 (3)0.0831 (12)
H250.18410.70720.32630.1*
N260.0351 (2)0.6605 (2)0.29666 (19)0.0687 (8)
O270.0591 (2)0.57455 (19)0.3027 (2)0.0984 (10)
C280.6442 (2)0.49055 (18)0.32203 (17)0.0450 (6)
H28A0.65310.54480.35610.054*
H28B0.7120.48130.29030.054*
S290.62016 (6)0.39480 (5)0.39312 (5)0.0517 (2)
C300.7555 (2)0.37491 (19)0.43343 (17)0.0475 (6)
C310.8492 (3)0.4281 (2)0.4247 (2)0.0604 (8)
H310.84310.48440.39930.073*
C320.9529 (3)0.3962 (3)0.4545 (3)0.0771 (10)
H321.01710.43010.44750.093*
C330.9589 (4)0.3142 (3)0.4943 (3)0.0871 (13)
H331.02780.29220.51420.104*
C340.8648 (4)0.2647 (3)0.5050 (2)0.0772 (11)
H340.87010.20940.53270.093*
N350.7633 (2)0.29458 (17)0.47588 (16)0.0572 (6)
O360.6727 (2)0.24782 (16)0.48565 (16)0.0756 (7)
O1L0.1572 (5)0.5507 (4)0.1374 (4)0.205 (2)
H1L0.120.51360.16490.308*
C2L0.0867 (7)0.5996 (6)0.0829 (5)0.189 (3)
H2LA0.05210.64780.1150.284*
H2LB0.13010.62370.03510.284*
H2LC0.030.56060.06150.284*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0480 (14)0.0322 (12)0.0432 (13)0.0010 (10)0.0013 (11)0.0040 (10)
C20.0599 (16)0.0485 (16)0.0447 (14)0.0036 (13)0.0087 (12)0.0060 (12)
C30.0659 (19)0.066 (2)0.0471 (15)0.0032 (16)0.0085 (14)0.0108 (14)
C40.0639 (18)0.065 (2)0.0594 (18)0.0085 (16)0.0044 (15)0.0287 (16)
C50.0639 (18)0.0428 (16)0.071 (2)0.0009 (14)0.0044 (15)0.0194 (14)
N60.0517 (12)0.0371 (12)0.0536 (13)0.0005 (10)0.0007 (10)0.0030 (10)
O70.0869 (16)0.0497 (12)0.0620 (13)0.0199 (11)0.0136 (12)0.0040 (10)
S80.0649 (4)0.0383 (3)0.0351 (3)0.0115 (3)0.0081 (3)0.0010 (2)
C90.0598 (16)0.0381 (14)0.0352 (12)0.0108 (12)0.0078 (11)0.0017 (10)
C100.0494 (14)0.0304 (12)0.0346 (12)0.0079 (10)0.0060 (10)0.0004 (9)
C110.0465 (13)0.0332 (12)0.0425 (13)0.0049 (10)0.0034 (11)0.0048 (10)
C120.0450 (13)0.0290 (12)0.0467 (13)0.0001 (10)0.0082 (11)0.0028 (10)
C130.0497 (14)0.0294 (12)0.0416 (13)0.0001 (10)0.0079 (11)0.0017 (10)
C140.0464 (13)0.0305 (12)0.0384 (12)0.0026 (10)0.0037 (10)0.0024 (10)
C150.0477 (13)0.0293 (12)0.0387 (12)0.0008 (10)0.0094 (10)0.0007 (9)
C160.0574 (17)0.0541 (17)0.0534 (16)0.0011 (14)0.0053 (13)0.0049 (13)
C170.074 (2)0.0518 (17)0.0513 (16)0.0057 (15)0.0062 (14)0.0164 (13)
C180.0585 (17)0.0464 (16)0.0557 (16)0.0127 (13)0.0063 (13)0.0059 (13)
C190.0485 (14)0.0331 (13)0.0655 (17)0.0037 (11)0.0095 (13)0.0016 (12)
S200.0567 (4)0.0417 (4)0.0823 (5)0.0054 (3)0.0209 (4)0.0093 (3)
C210.0492 (15)0.0523 (17)0.0592 (17)0.0065 (13)0.0094 (13)0.0061 (13)
C220.0565 (17)0.0502 (17)0.082 (2)0.0055 (14)0.0066 (16)0.0005 (16)
C230.073 (2)0.054 (2)0.100 (3)0.0166 (18)0.006 (2)0.0046 (19)
C240.074 (2)0.078 (3)0.099 (3)0.032 (2)0.014 (2)0.010 (2)
C250.0563 (19)0.096 (3)0.099 (3)0.020 (2)0.0250 (19)0.020 (2)
N260.0583 (15)0.0674 (18)0.0815 (19)0.0050 (14)0.0231 (14)0.0188 (15)
O270.0813 (18)0.0709 (17)0.146 (3)0.0036 (14)0.0488 (18)0.0273 (17)
C280.0495 (14)0.0383 (14)0.0471 (14)0.0038 (11)0.0007 (12)0.0030 (11)
S290.0522 (4)0.0503 (4)0.0524 (4)0.0049 (3)0.0013 (3)0.0111 (3)
C300.0598 (16)0.0425 (14)0.0399 (13)0.0037 (12)0.0041 (12)0.0029 (11)
C310.0605 (18)0.0562 (18)0.0639 (18)0.0008 (15)0.0104 (15)0.0032 (15)
C320.058 (2)0.085 (3)0.087 (3)0.0017 (18)0.0141 (18)0.015 (2)
C330.080 (3)0.092 (3)0.087 (3)0.030 (2)0.032 (2)0.016 (2)
C340.101 (3)0.066 (2)0.064 (2)0.025 (2)0.022 (2)0.0010 (17)
N350.0801 (18)0.0444 (14)0.0467 (13)0.0080 (13)0.0035 (12)0.0002 (11)
O360.0988 (18)0.0528 (14)0.0755 (15)0.0065 (13)0.0083 (14)0.0178 (12)
O1L0.213 (4)0.187 (4)0.214 (4)0.065 (4)0.012 (3)0.012 (3)
C2L0.178 (5)0.210 (5)0.179 (5)0.041 (4)0.017 (4)0.006 (4)
Geometric parameters (Å, º) top
C1—N61.364 (3)C19—S201.822 (3)
C1—C21.377 (4)C19—H19A0.97
C1—S81.751 (2)C19—H19B0.97
C2—C31.376 (4)S20—C211.737 (3)
C2—H20.93C21—N261.368 (4)
C3—C41.377 (5)C21—C221.378 (4)
C3—H30.93C22—C231.379 (4)
C4—C51.368 (5)C22—H220.93
C4—H40.93C23—C241.368 (5)
C5—N61.349 (4)C23—H230.93
C5—H50.93C24—C251.366 (6)
N6—O71.306 (3)C24—H240.93
S8—C91.820 (3)C25—N261.348 (5)
C9—C101.517 (3)C25—H250.93
C9—H9A0.97N26—O271.318 (4)
C9—H9B0.97C28—S291.830 (3)
C10—C151.394 (4)C28—H28A0.97
C10—C111.404 (4)C28—H28B0.97
C11—C121.400 (4)S29—C301.742 (3)
C11—C161.510 (4)C30—N351.368 (4)
C12—C131.404 (4)C30—C311.384 (4)
C12—C191.508 (3)C31—C321.394 (5)
C13—C141.400 (3)C31—H310.93
C13—C171.516 (4)C32—C331.370 (6)
C14—C151.406 (3)C32—H320.93
C14—C281.510 (3)C33—C341.361 (6)
C15—C181.511 (4)C33—H330.93
C16—H16A0.96C34—N351.358 (4)
C16—H16B0.96C34—H340.93
C16—H16C0.96N35—O361.302 (4)
C17—H17A0.96O1L—C2L1.414 (9)
C17—H17B0.96O1L—H1L0.82
C17—H17C0.96C2L—H2LA0.96
C18—H18A0.96C2L—H2LB0.96
C18—H18B0.96C2L—H2LC0.96
C18—H18C0.96
N6—C1—C2120.1 (2)H18A—C18—H18C109.5
N6—C1—S8111.72 (18)H18B—C18—H18C109.5
C2—C1—S8128.2 (2)C12—C19—S20108.98 (18)
C3—C2—C1119.8 (3)C12—C19—H19A109.9
C3—C2—H2120.1S20—C19—H19A109.9
C1—C2—H2120.1C12—C19—H19B109.9
C2—C3—C4119.3 (3)S20—C19—H19B109.9
C2—C3—H3120.4H19A—C19—H19B108.3
C4—C3—H3120.4C21—S20—C19100.44 (13)
C5—C4—C3119.8 (3)N26—C21—C22118.4 (3)
C5—C4—H4120.1N26—C21—S20112.7 (2)
C3—C4—H4120.1C22—C21—S20128.9 (2)
N6—C5—C4120.9 (3)C21—C22—C23120.8 (3)
N6—C5—H5119.6C21—C22—H22119.6
C4—C5—H5119.6C23—C22—H22119.6
O7—N6—C5121.4 (2)C24—C23—C22119.0 (4)
O7—N6—C1118.5 (2)C24—C23—H23120.5
C5—N6—C1120.1 (3)C22—C23—H23120.5
C1—S8—C9100.86 (12)C25—C24—C23119.9 (3)
C10—C9—S8106.53 (16)C25—C24—H24120
C10—C9—H9A110.4C23—C24—H24120
S8—C9—H9A110.4N26—C25—C24120.7 (3)
C10—C9—H9B110.4N26—C25—H25119.7
S8—C9—H9B110.4C24—C25—H25119.7
H9A—C9—H9B108.6O27—N26—C25121.3 (3)
C15—C10—C11120.6 (2)O27—N26—C21117.7 (3)
C15—C10—C9120.3 (2)C25—N26—C21121.0 (3)
C11—C10—C9119.1 (2)C14—C28—S29108.76 (17)
C12—C11—C10119.0 (2)C14—C28—H28A109.9
C12—C11—C16120.1 (2)S29—C28—H28A109.9
C10—C11—C16120.9 (2)C14—C28—H28B109.9
C11—C12—C13121.0 (2)S29—C28—H28B109.9
C11—C12—C19119.0 (2)H28A—C28—H28B108.3
C13—C12—C19120.0 (2)C30—S29—C28100.76 (13)
C14—C13—C12119.0 (2)N35—C30—C31120.3 (3)
C14—C13—C17120.3 (2)N35—C30—S29111.7 (2)
C12—C13—C17120.7 (2)C31—C30—S29127.9 (2)
C13—C14—C15120.3 (2)C30—C31—C32119.2 (3)
C13—C14—C28119.9 (2)C30—C31—H31120.4
C15—C14—C28119.8 (2)C32—C31—H31120.4
C10—C15—C14119.8 (2)C33—C32—C31119.2 (4)
C10—C15—C18121.1 (2)C33—C32—H32120.4
C14—C15—C18119.1 (2)C31—C32—H32120.4
C11—C16—H16A109.5C34—C33—C32120.4 (4)
C11—C16—H16B109.5C34—C33—H33119.8
H16A—C16—H16B109.5C32—C33—H33119.8
C11—C16—H16C109.5N35—C34—C33121.1 (4)
H16A—C16—H16C109.5N35—C34—H34119.4
H16B—C16—H16C109.5C33—C34—H34119.4
C13—C17—H17A109.5O36—N35—C34121.7 (3)
C13—C17—H17B109.5O36—N35—C30118.7 (3)
H17A—C17—H17B109.5C34—N35—C30119.6 (3)
C13—C17—H17C109.5C2L—O1L—H1L109.5
H17A—C17—H17C109.5O1L—C2L—H2LA109.5
H17B—C17—H17C109.5O1L—C2L—H2LB109.5
C15—C18—H18A109.5H2LA—C2L—H2LB109.5
C15—C18—H18B109.5O1L—C2L—H2LC109.5
H18A—C18—H18B109.5H2LA—C2L—H2LC109.5
C15—C18—H18C109.5H2LB—C2L—H2LC109.5
N6—C1—C2—C30.2 (4)C13—C14—C15—C103.0 (3)
S8—C1—C2—C3178.9 (2)C28—C14—C15—C10177.1 (2)
C1—C2—C3—C41.6 (5)C13—C14—C15—C18176.4 (2)
C2—C3—C4—C51.6 (5)C28—C14—C15—C183.5 (3)
C3—C4—C5—N60.2 (5)C11—C12—C19—S2081.2 (3)
C4—C5—N6—O7178.1 (3)C13—C12—C19—S2099.9 (2)
C4—C5—N6—C11.9 (4)C12—C19—S20—C21177.6 (2)
C2—C1—N6—O7178.1 (3)C19—S20—C21—N26174.9 (2)
S8—C1—N6—O70.8 (3)C19—S20—C21—C225.5 (4)
C2—C1—N6—C51.9 (4)N26—C21—C22—C232.8 (5)
S8—C1—N6—C5179.1 (2)S20—C21—C22—C23176.7 (3)
N6—C1—S8—C9177.65 (19)C21—C22—C23—C240.3 (6)
C2—C1—S8—C93.5 (3)C22—C23—C24—C252.5 (7)
C1—S8—C9—C10178.14 (19)C23—C24—C25—N261.5 (7)
S8—C9—C10—C1592.9 (2)C24—C25—N26—O27177.9 (4)
S8—C9—C10—C1186.7 (2)C24—C25—N26—C211.8 (6)
C15—C10—C11—C121.1 (3)C22—C21—N26—O27175.8 (3)
C9—C10—C11—C12178.6 (2)S20—C21—N26—O274.5 (4)
C15—C10—C11—C16179.3 (2)C22—C21—N26—C253.9 (5)
C9—C10—C11—C161.0 (3)S20—C21—N26—C25175.7 (3)
C10—C11—C12—C132.6 (4)C13—C14—C28—S2994.8 (2)
C16—C11—C12—C13177.0 (2)C15—C14—C28—S2985.0 (2)
C10—C11—C12—C19176.3 (2)C14—C28—S29—C30162.19 (18)
C16—C11—C12—C194.1 (4)C28—S29—C30—N35168.0 (2)
C11—C12—C13—C146.3 (4)C28—S29—C30—C3110.1 (3)
C19—C12—C13—C14172.5 (2)N35—C30—C31—C324.3 (5)
C11—C12—C13—C17172.2 (2)S29—C30—C31—C32173.7 (3)
C19—C12—C13—C179.0 (4)C30—C31—C32—C332.1 (5)
C12—C13—C14—C156.5 (3)C31—C32—C33—C340.3 (6)
C17—C13—C14—C15172.0 (2)C32—C33—C34—N350.7 (6)
C12—C13—C14—C28173.6 (2)C33—C34—N35—O36180.0 (3)
C17—C13—C14—C287.9 (4)C33—C34—N35—C301.4 (5)
C11—C10—C15—C140.8 (3)C31—C30—N35—O36177.5 (3)
C9—C10—C15—C14178.9 (2)S29—C30—N35—O364.2 (3)
C11—C10—C15—C18179.8 (2)C31—C30—N35—C343.9 (4)
C9—C10—C15—C180.5 (3)S29—C30—N35—C34174.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1L—H1L···O270.822.412.804 (7)110
C16—H16A···O36i0.962.473.348 (4)152
C16—H16B···S200.962.683.420 (3)135
C18—H18B···S290.962.793.515 (3)133
C25—H25···O7ii0.932.443.147 (5)133
C28—H28A···O7i0.972.483.397 (3)157
C31—H31···O27iii0.932.353.107 (4)139
C2—H2···Cg1iv0.932.913.774 (3)154
C4—H4···Cg1v0.932.673.377 (3)134
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC27H27N3O3S3·CH4O
Mr569.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.9644 (17), 14.9129 (8), 15.467 (2)
β (°) 91.733 (7)
V3)2758.4 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.78
Crystal size (mm)0.52 × 0.42 × 0.06
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.296, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
5226, 5226, 4156
Rint0
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.150, 1.09
No. of reflections5226
No. of parameters347
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1L—H1L···O270.822.412.804 (7)110.4
C16—H16A···O36i0.962.473.348 (4)152
C16—H16B···S200.962.683.420 (3)135
C18—H18B···S290.962.793.515 (3)133
C25—H25···O7ii0.932.443.147 (5)133
C28—H28A···O7i0.972.483.397 (3)157
C31—H31···O27iii0.932.353.107 (4)139
C2—H2···Cg1iv0.932.913.774 (3)154
C4—H4···Cg1v0.932.673.377 (3)134
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y1/2, z3/2.
 

Acknowledgements

BRDN thanks the University Grants Commission, India, for a Teacher Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr. 129, 145–150.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.  Google Scholar
First citationLeonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.  Google Scholar
First citationLobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRavindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1036-o1037
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds