organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-2-methyl-1-tosyl­naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 16 May 2008; accepted 21 May 2008; online 24 May 2008)

The title compound, C20H15BrO3S, was prepared by the oxidation of 7-bromo-2-methyl-1-(4-tolyl­sulfan­yl)naph­tho[2,1-b]furan with 3-chloro­peroxy­benzoic acid. The 4-tolyl ring makes a dihedral angle of 70.96 (6)° with the plane of the naphthofuran fragment. The crystal structure is stabilized by aromatic ππ stacking inter­actions, with centroid–centroid distances of 3.672 (3) and 3.858 (3) Å between the central benzene and furan rings, and between the brominated benzene and central benzene rings of the naphthofuran system of neighbouring mol­ecules, respectively. In addition, the stacked mol­ecules exhibit C—H⋯π and inter- and intra­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl-1-(phenyl­sulfon­yl)naphtho[2,1-b]furan compounds, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o727.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o944.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15BrO3S

  • Mr = 415.29

  • Monoclinic, P 21 /n

  • a = 14.026 (2) Å

  • b = 8.225 (1) Å

  • c = 15.185 (2) Å

  • β = 102.826 (2)°

  • V = 1708.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 173 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.480, Tmax = 0.608

  • 10014 measured reflections

  • 3704 independent reflections

  • 3368 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.09

  • 3704 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 2.57 3.485 (3) 163
C4—H4⋯O2 0.95 2.21 3.035 (2) 145
C15—H15⋯O3ii 0.95 2.42 3.303 (2) 155
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z. Cg1 is the centroid of the C13–C18 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structures of 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan analogues, viz. 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Choi et al., 2008a) and 7-bromo-2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Choi et al., 2008b). Here we report the crystal structure of the title compound, 7-bromo-2-methyl-1-tosylnaphtho[2,1-b]furan (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.01 Å from the least-squares plane defined by the thirteen constituent atoms. The 4-tolyl ring (C13-C18) makes a dihedral angle of 70.96 (6)° with the plane of the naphthofuran fragment. The molecular packing (Fig. 2) is stabilized by two different ππ interactions within each stack of molecule; one between the central benzene ring (Cg3) and the furan ring (Cg4ii) of the adjacent naphthofuran fragments {distance; 3.672 (3) Å}, and a second between the brominated benzene ring (Cg2) and the central benzene ring (Cg3iii) of the adjacent naphthofuran fragments {distance; 3.858 (3) Å} (Fig. 2; Cg2, Cg3 and Cg4 are the centroids of the C3-C8 benzene, the C2/C3/C8/C9/C10/C11 benzene, and the O1/C12/C1/C2/C11 furan rings, respectively, symmetry code as in Fig. 2). The crystal packing is further stabilized by C—H···π interaction between a central benzene H atom of naphthofuran unit and the 4-tolyl ring of the tosyl substituent, with a C10—H10···Cg1i separation of 2.57 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C13-C18 phenyl ring; symmetry code as in Fig. 2). Additionally, inter- and intramolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan compounds, see: Choi et al. (2008a,b). Cg1 is the centroid of the C13–C18 benzene ring

Experimental top

3-Chloroperoxybenzoic acid (77%, 377 mg, 1.68 mmol) was added in small portions to a stirred solution of 7-bromo-2-methyl-1-(4-tolylsulfanyl)naphtho[2,1-b]furan (306 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (chloroform) to afford the title compound as a colourless solid [yield 79%, m.p. 480-481 K; Rf = 0.51 (chloroform)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.35 (s, 3H), 2.99 (s, 3H), 7.27 (s, 2H), 7.59-7.68 (m, 3H), 7.83 (d, J = 8.08 Hz, 2H), 8.03 (s, 1H), 8.91 (s, J = 9.16 Hz, 1H); EI-MS 416 [M+2], 414 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The highest peak in the difference map is 0.77 Å from Br and the largest hole is 0.67 Å from Br.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. π···π, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x, y+1, z; (v) x, y-1, z; (vi) x+1/2, -y+3/2, z+1/2.]
7-Bromo-2-methyl-1-tosylnaphtho[2,1-b]furan top
Crystal data top
C20H15BrO3SF(000) = 840
Mr = 415.29Dx = 1.615 Mg m3
Monoclinic, P21/nMelting point = 480–481 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.026 (2) ÅCell parameters from 6484 reflections
b = 8.225 (1) Åθ = 2.2–28.3°
c = 15.185 (2) ŵ = 2.55 mm1
β = 102.826 (2)°T = 173 K
V = 1708.1 (4) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3704 independent reflections
Radiation source: fine-focus sealed tube3368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10 pixels mm-1θmax = 27.0°, θmin = 2.8°
ϕ and ω scansh = 1714
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 109
Tmin = 0.480, Tmax = 0.608l = 1919
10014 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.421P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
C20H15BrO3SV = 1708.1 (4) Å3
Mr = 415.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.026 (2) ŵ = 2.55 mm1
b = 8.225 (1) ÅT = 173 K
c = 15.185 (2) Å0.30 × 0.30 × 0.20 mm
β = 102.826 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3704 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3368 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.608Rint = 0.024
10014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.09Δρmax = 0.61 e Å3
3704 reflectionsΔρmin = 1.04 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.307602 (17)1.04128 (3)0.664085 (18)0.04012 (10)
S0.79201 (3)0.59282 (6)0.62949 (3)0.01860 (11)
O10.64155 (11)0.52776 (18)0.38321 (9)0.0264 (3)
O20.74469 (10)0.61119 (18)0.70363 (9)0.0248 (3)
O30.85357 (11)0.45249 (17)0.62854 (11)0.0276 (3)
C10.70375 (14)0.5926 (2)0.52785 (12)0.0190 (4)
C20.60466 (14)0.6593 (2)0.50343 (12)0.0184 (4)
C30.53912 (13)0.7504 (2)0.54485 (12)0.0177 (4)
C40.56078 (14)0.8095 (2)0.63474 (13)0.0214 (4)
H40.62330.78830.67230.026*
C50.49378 (15)0.8966 (3)0.66890 (14)0.0245 (4)
H50.51020.93680.72900.029*
C60.40102 (15)0.9256 (3)0.61444 (15)0.0249 (4)
C70.37592 (15)0.8727 (3)0.52738 (14)0.0250 (4)
H70.31250.89470.49170.030*
C80.44413 (14)0.7849 (2)0.48995 (13)0.0209 (4)
C90.41645 (15)0.7306 (3)0.39838 (14)0.0266 (4)
H90.35290.75500.36380.032*
C100.47904 (16)0.6451 (3)0.35995 (13)0.0264 (4)
H100.46110.60880.29910.032*
C110.57167 (15)0.6128 (2)0.41433 (13)0.0219 (4)
C120.72149 (16)0.5171 (2)0.45281 (14)0.0241 (4)
C130.86530 (13)0.7660 (2)0.62557 (12)0.0181 (4)
C140.82844 (14)0.9193 (2)0.63701 (13)0.0207 (4)
H140.76350.93150.64490.025*
C150.88778 (15)1.0550 (2)0.63683 (14)0.0229 (4)
H150.86261.16020.64410.027*
C160.98325 (16)1.0390 (2)0.62625 (15)0.0249 (4)
C171.01851 (17)0.8839 (3)0.61549 (19)0.0361 (5)
H171.08370.87130.60830.043*
C180.96049 (16)0.7473 (3)0.61504 (17)0.0309 (5)
H180.98560.64210.60760.037*
C190.80537 (19)0.4294 (3)0.43022 (17)0.0359 (5)
H19A0.80320.31480.44730.054*
H19B0.86670.47820.46330.054*
H19C0.80170.43740.36520.054*
C201.04846 (17)1.1859 (3)0.62979 (18)0.0360 (5)
H20A1.00811.28360.61530.054*
H20B1.08961.17310.58580.054*
H20C1.09011.19630.69060.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03043 (14)0.04477 (17)0.04947 (17)0.01043 (10)0.01810 (11)0.00261 (11)
S0.0176 (2)0.0165 (2)0.0206 (2)0.00131 (16)0.00179 (17)0.00252 (17)
O10.0320 (8)0.0272 (8)0.0197 (7)0.0013 (6)0.0050 (6)0.0045 (6)
O20.0238 (7)0.0306 (8)0.0191 (7)0.0015 (6)0.0029 (5)0.0053 (6)
O30.0259 (8)0.0169 (7)0.0370 (8)0.0048 (6)0.0009 (6)0.0022 (6)
C10.0194 (9)0.0179 (9)0.0191 (9)0.0000 (7)0.0030 (7)0.0002 (7)
C20.0204 (9)0.0149 (8)0.0183 (9)0.0019 (7)0.0008 (7)0.0014 (7)
C30.0180 (9)0.0155 (8)0.0187 (8)0.0011 (7)0.0021 (7)0.0026 (7)
C40.0187 (9)0.0241 (10)0.0201 (9)0.0014 (7)0.0015 (7)0.0001 (7)
C50.0242 (10)0.0264 (10)0.0233 (10)0.0020 (8)0.0061 (8)0.0034 (8)
C60.0219 (10)0.0225 (10)0.0324 (11)0.0021 (8)0.0107 (8)0.0020 (8)
C70.0189 (9)0.0252 (10)0.0288 (10)0.0024 (8)0.0009 (8)0.0058 (8)
C80.0206 (9)0.0189 (9)0.0211 (9)0.0016 (7)0.0003 (7)0.0040 (7)
C90.0244 (10)0.0276 (10)0.0227 (10)0.0006 (8)0.0056 (8)0.0040 (8)
C100.0323 (11)0.0268 (10)0.0159 (9)0.0024 (8)0.0041 (8)0.0007 (8)
C110.0259 (10)0.0193 (9)0.0205 (9)0.0012 (8)0.0048 (8)0.0005 (7)
C120.0263 (10)0.0219 (10)0.0243 (10)0.0001 (8)0.0059 (8)0.0005 (8)
C130.0176 (9)0.0179 (9)0.0184 (8)0.0008 (7)0.0029 (7)0.0005 (7)
C140.0157 (9)0.0213 (9)0.0245 (9)0.0040 (7)0.0029 (7)0.0011 (7)
C150.0224 (10)0.0177 (9)0.0274 (10)0.0041 (7)0.0030 (8)0.0005 (7)
C160.0248 (10)0.0216 (10)0.0295 (10)0.0020 (8)0.0085 (8)0.0016 (8)
C170.0246 (11)0.0275 (12)0.0625 (16)0.0002 (9)0.0231 (11)0.0077 (11)
C180.0260 (11)0.0201 (10)0.0507 (13)0.0019 (8)0.0170 (10)0.0063 (9)
C190.0361 (13)0.0377 (13)0.0379 (12)0.0065 (10)0.0166 (10)0.0062 (10)
C200.0276 (11)0.0271 (11)0.0563 (15)0.0058 (9)0.0158 (11)0.0028 (10)
Geometric parameters (Å, º) top
Br—C61.905 (2)C9—H90.9500
S—O21.436 (2)C10—C111.401 (3)
S—O31.443 (2)C10—H100.9500
S—C11.751 (2)C12—C191.483 (3)
S—C131.765 (2)C13—C181.388 (3)
O1—C121.362 (3)C13—C141.388 (3)
O1—C111.371 (3)C14—C151.392 (3)
C1—C121.368 (3)C14—H140.9500
C1—C21.463 (3)C15—C161.390 (3)
C2—C111.383 (3)C15—H150.9500
C2—C31.435 (3)C16—C171.391 (3)
C3—C41.417 (3)C16—C201.509 (3)
C3—C81.434 (3)C17—C181.387 (3)
C4—C51.372 (3)C17—H170.9500
C4—H40.9500C18—H180.9500
C5—C61.399 (3)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C6—C71.362 (3)C19—H19C0.9800
C7—C81.415 (3)C20—H20A0.9800
C7—H70.9500C20—H20B0.9800
C8—C91.430 (3)C20—H20C0.9800
C9—C101.354 (3)
O2—S—O3118.26 (9)O1—C11—C2111.6 (2)
O2—S—C1109.37 (9)O1—C11—C10122.3 (2)
O3—S—C1107.33 (9)C2—C11—C10126.1 (2)
O2—S—C13108.39 (9)O1—C12—C1110.3 (2)
O3—S—C13106.92 (9)O1—C12—C19114.2 (2)
C1—S—C13105.90 (9)C1—C12—C19135.5 (2)
C12—O1—C11107.1 (2)C18—C13—C14120.7 (2)
C12—C1—C2107.3 (2)C18—C13—S119.8 (2)
C12—C1—S120.7 (2)C14—C13—S119.5 (1)
C2—C1—S132.0 (2)C13—C14—C15119.2 (2)
C11—C2—C3117.7 (2)C13—C14—H14120.4
C11—C2—C1103.7 (2)C15—C14—H14120.4
C3—C2—C1138.6 (2)C16—C15—C14121.1 (2)
C4—C3—C8117.7 (2)C16—C15—H15119.5
C4—C3—C2125.5 (2)C14—C15—H15119.5
C8—C3—C2116.8 (2)C15—C16—C17118.5 (2)
C5—C4—C3121.7 (2)C15—C16—C20120.8 (2)
C5—C4—H4119.2C17—C16—C20120.7 (2)
C3—C4—H4119.2C18—C17—C16121.4 (2)
C4—C5—C6119.4 (2)C18—C17—H17119.3
C4—C5—H5120.3C16—C17—H17119.3
C6—C5—H5120.3C17—C18—C13119.2 (2)
C7—C6—C5121.7 (2)C17—C18—H18120.4
C7—C6—Br119.5 (2)C13—C18—H18120.4
C5—C6—Br118.9 (2)C12—C19—H19A109.5
C6—C7—C8120.1 (2)C12—C19—H19B109.5
C6—C7—H7120.0H19A—C19—H19B109.5
C8—C7—H7120.0C12—C19—H19C109.5
C7—C8—C9119.2 (2)H19A—C19—H19C109.5
C7—C8—C3119.4 (2)H19B—C19—H19C109.5
C9—C8—C3121.4 (2)C16—C20—H20A109.5
C10—C9—C8121.3 (2)C16—C20—H20B109.5
C10—C9—H9119.4H20A—C20—H20B109.5
C8—C9—H9119.4C16—C20—H20C109.5
C9—C10—C11116.7 (2)H20A—C20—H20C109.5
C9—C10—H10121.6H20B—C20—H20C109.5
C11—C10—H10121.6
O2—S—C1—C12154.52 (16)C12—O1—C11—C20.4 (2)
O3—S—C1—C1225.06 (19)C12—O1—C11—C10179.39 (19)
C13—S—C1—C1288.88 (18)C3—C2—C11—O1179.65 (16)
O2—S—C1—C223.9 (2)C1—C2—C11—O10.9 (2)
O3—S—C1—C2153.39 (18)C3—C2—C11—C100.6 (3)
C13—S—C1—C292.7 (2)C1—C2—C11—C10178.83 (19)
C12—C1—C2—C111.1 (2)C9—C10—C11—O1179.86 (19)
S—C1—C2—C11177.49 (16)C9—C10—C11—C20.4 (3)
C12—C1—C2—C3179.6 (2)C11—O1—C12—C10.4 (2)
S—C1—C2—C31.8 (4)C11—O1—C12—C19179.30 (18)
C11—C2—C3—C4179.21 (18)C2—C1—C12—O11.0 (2)
C1—C2—C3—C41.6 (4)S—C1—C12—O1177.83 (14)
C11—C2—C3—C80.3 (3)C2—C1—C12—C19178.7 (2)
C1—C2—C3—C8178.8 (2)S—C1—C12—C192.5 (4)
C8—C3—C4—C50.1 (3)O2—S—C13—C18133.70 (17)
C2—C3—C4—C5179.65 (19)O3—S—C13—C185.2 (2)
C3—C4—C5—C61.2 (3)C1—S—C13—C18109.04 (18)
C4—C5—C6—C71.5 (3)O2—S—C13—C1443.50 (17)
C4—C5—C6—Br178.18 (16)O3—S—C13—C14172.00 (15)
C5—C6—C7—C80.4 (3)C1—S—C13—C1473.77 (17)
Br—C6—C7—C8179.22 (15)C18—C13—C14—C150.7 (3)
C6—C7—C8—C9179.87 (19)S—C13—C14—C15177.89 (15)
C6—C7—C8—C30.9 (3)C13—C14—C15—C160.6 (3)
C4—C3—C8—C71.1 (3)C14—C15—C16—C170.2 (3)
C2—C3—C8—C7179.28 (17)C14—C15—C16—C20177.6 (2)
C4—C3—C8—C9179.64 (18)C15—C16—C17—C180.1 (4)
C2—C3—C8—C90.1 (3)C20—C16—C17—C18177.9 (2)
C7—C8—C9—C10179.5 (2)C16—C17—C18—C130.0 (4)
C3—C8—C9—C100.2 (3)C14—C13—C18—C170.4 (3)
C8—C9—C10—C110.0 (3)S—C13—C18—C17177.58 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.573.485 (3)163
C4—H4···O20.952.213.035 (2)145
C15—H15···O3ii0.952.423.303 (2)155
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H15BrO3S
Mr415.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)14.026 (2), 8.225 (1), 15.185 (2)
β (°) 102.826 (2)
V3)1708.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.480, 0.608
No. of measured, independent and
observed [I > 2σ(I)] reflections
10014, 3704, 3368
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.09
No. of reflections3704
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 1.04

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.952.573.485 (3)163.0
C4—H4···O20.952.213.035 (2)144.5
C15—H15···O3ii0.952.423.303 (2)155.2
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds