organic compounds
tert-Butyl 2-(dihydroxyboryl)pyrrole-1-carboxylate
aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664, Warsaw, Poland
*Correspondence e-mail: tomasz_klis@interia.pl
In the title compound, C9H14BNO4, the carbonyl and boronic acid groups are essentially coplanar with the pyrrole ring and the boronic acid group has an exo-endo conformation. The exo-oriented OH is engaged in an intramolecular O—H⋯O interaction, while the endo-oriented one is involved in intermolecular hydrogen bonding to form centrosymmetric dimers. A supramolecular assembly is achieved through interactions involving the tert-butyl groups, forming infinite chains along the crystallographic b axis. There are, in addition, face-to-face and center-to-edge stacking interactions [distance between the pyrrole ring centroid and an N atom from a neighbouring molecule = 3.369 (8) Å].
Related literature
For related literature, see: Dabrowski et al. (2006); Parry et al. (2002); Saygili et al. (2004); Seminario et al. (1998); Thompson et al. (2005); Wang et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808013482/bg2173sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013482/bg2173Isup2.hkl
N-tert-butoxycarbonyl-pyrrole-2-boronic acid was obtained from Aldrich, crystallized from tetrahydrofurane and dried in air.
All of hydrogen atoms were located geometrically and their positions were refined while temperature factors were not. The maximum electron-density peak in the final difference map is 0.80 Å from atom C1.
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell
CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H14BNO4 | F(000) = 896 |
Mr = 211.02 | Dx = 1.287 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 19290 reflections |
a = 12.9179 (12) Å | θ = 2.8–28.7° |
b = 9.5885 (7) Å | µ = 0.10 mm−1 |
c = 17.5811 (15) Å | T = 100 K |
V = 2177.7 (3) Å3 | Prismatic, colourless |
Z = 8 | 0.71 × 0.34 × 0.22 mm |
Kuma KM4 CCD diffractometer | 2713 independent reflections |
Radiation source: fine-focus sealed tube | 1911 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 8.6479 pixels mm-1 | θmax = 28.7°, θmin = 2.8° |
ω scan | h = −17→17 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | k = −12→12 |
Tmin = 0.95, Tmax = 0.98 | l = −23→23 |
19290 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | All H-atom parameters refined |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0461P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max = 0.001 |
2713 reflections | Δρmax = 0.26 e Å−3 |
193 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0033 (7) |
C9H14BNO4 | V = 2177.7 (3) Å3 |
Mr = 211.02 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.9179 (12) Å | µ = 0.10 mm−1 |
b = 9.5885 (7) Å | T = 100 K |
c = 17.5811 (15) Å | 0.71 × 0.34 × 0.22 mm |
Kuma KM4 CCD diffractometer | 2713 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | 1911 reflections with I > 2σ(I) |
Tmin = 0.95, Tmax = 0.98 | Rint = 0.021 |
19290 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.076 | All H-atom parameters refined |
S = 0.97 | Δρmax = 0.26 e Å−3 |
2713 reflections | Δρmin = −0.19 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.54350 (6) | 0.63771 (7) | 0.45212 (4) | 0.02586 (19) | |
O2 | 0.40336 (6) | 0.64180 (8) | 0.53731 (4) | 0.02619 (19) | |
O3 | 0.60617 (5) | 0.83554 (7) | 0.36263 (4) | 0.02260 (18) | |
O4 | 0.56150 (5) | 1.04637 (7) | 0.31656 (4) | 0.02186 (18) | |
N1 | 0.46192 (6) | 0.95162 (8) | 0.40642 (4) | 0.01800 (19) | |
C1 | 0.42176 (8) | 0.85423 (10) | 0.45945 (5) | 0.0187 (2) | |
C2 | 0.33504 (8) | 0.91604 (11) | 0.48868 (6) | 0.0223 (2) | |
C3 | 0.32126 (8) | 1.05007 (11) | 0.45569 (6) | 0.0242 (2) | |
C4 | 0.39900 (8) | 1.06957 (10) | 0.40571 (6) | 0.0218 (2) | |
C5 | 0.54985 (8) | 0.93691 (9) | 0.36119 (5) | 0.0186 (2) | |
C6 | 0.64575 (8) | 1.04984 (10) | 0.25803 (5) | 0.0225 (2) | |
C7 | 0.63032 (10) | 0.93008 (12) | 0.20274 (6) | 0.0285 (3) | |
C8 | 0.75028 (9) | 1.04896 (12) | 0.29709 (6) | 0.0269 (2) | |
C9 | 0.62477 (10) | 1.18889 (12) | 0.22011 (7) | 0.0304 (3) | |
B1 | 0.46066 (9) | 0.70564 (12) | 0.48297 (6) | 0.0204 (2) | |
H1O | 0.5763 (11) | 0.6964 (15) | 0.4187 (8) | 0.056 (4)* | |
H2O | 0.4234 (12) | 0.5504 (17) | 0.5442 (8) | 0.060 (5)* | |
H2 | 0.2915 (8) | 0.8741 (11) | 0.5269 (5) | 0.018 (2)* | |
H3 | 0.2680 (9) | 1.1122 (12) | 0.4668 (6) | 0.028 (3)* | |
H4 | 0.4168 (8) | 1.1463 (11) | 0.3729 (6) | 0.020 (3)* | |
H7A | 0.5580 (11) | 0.9321 (12) | 0.1830 (7) | 0.038 (3)* | |
H7B | 0.6429 (9) | 0.8387 (12) | 0.2253 (6) | 0.029 (3)* | |
H7C | 0.6788 (9) | 0.9424 (11) | 0.1603 (6) | 0.029 (3)* | |
H8A | 0.7576 (9) | 1.1342 (13) | 0.3317 (7) | 0.038 (3)* | |
H8B | 0.7629 (9) | 0.9613 (12) | 0.3252 (6) | 0.031 (3)* | |
H8C | 0.8046 (10) | 1.0547 (12) | 0.2579 (7) | 0.036 (3)* | |
H9A | 0.6288 (8) | 1.2649 (12) | 0.2567 (7) | 0.034 (3)* | |
H9B | 0.5551 (10) | 1.1878 (13) | 0.1981 (6) | 0.040 (3)* | |
H9C | 0.6768 (9) | 1.2037 (12) | 0.1802 (7) | 0.039 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0238 (4) | 0.0218 (4) | 0.0320 (4) | 0.0014 (3) | 0.0056 (3) | 0.0085 (3) |
O2 | 0.0255 (4) | 0.0253 (4) | 0.0278 (4) | −0.0001 (3) | 0.0051 (3) | 0.0059 (3) |
O3 | 0.0227 (4) | 0.0186 (4) | 0.0265 (4) | 0.0021 (3) | 0.0044 (3) | 0.0032 (3) |
O4 | 0.0240 (4) | 0.0180 (4) | 0.0235 (4) | 0.0007 (3) | 0.0031 (3) | 0.0038 (3) |
N1 | 0.0172 (4) | 0.0178 (4) | 0.0190 (4) | 0.0001 (3) | −0.0011 (3) | −0.0005 (3) |
C1 | 0.0181 (5) | 0.0220 (5) | 0.0159 (4) | −0.0040 (4) | −0.0023 (4) | −0.0013 (4) |
C2 | 0.0188 (5) | 0.0286 (6) | 0.0194 (5) | −0.0018 (4) | −0.0009 (4) | −0.0039 (4) |
C3 | 0.0195 (5) | 0.0264 (6) | 0.0267 (5) | 0.0049 (5) | −0.0040 (4) | −0.0071 (4) |
C4 | 0.0220 (5) | 0.0194 (5) | 0.0239 (5) | 0.0029 (4) | −0.0061 (4) | −0.0022 (4) |
C5 | 0.0203 (5) | 0.0170 (5) | 0.0186 (5) | −0.0027 (4) | −0.0026 (4) | −0.0011 (4) |
C6 | 0.0245 (6) | 0.0228 (5) | 0.0203 (5) | −0.0023 (4) | 0.0036 (4) | 0.0031 (4) |
C7 | 0.0341 (7) | 0.0281 (6) | 0.0233 (6) | −0.0037 (5) | 0.0027 (5) | −0.0002 (4) |
C8 | 0.0258 (6) | 0.0270 (6) | 0.0278 (6) | −0.0045 (5) | 0.0011 (5) | 0.0047 (5) |
C9 | 0.0339 (7) | 0.0270 (6) | 0.0304 (6) | −0.0027 (5) | 0.0012 (5) | 0.0087 (5) |
B1 | 0.0193 (6) | 0.0230 (6) | 0.0190 (5) | −0.0038 (5) | −0.0027 (5) | −0.0013 (5) |
O1—B1 | 1.3652 (13) | C3—H3 | 0.931 (12) |
O1—H1O | 0.917 (15) | C4—H4 | 0.963 (10) |
O2—B1 | 1.3547 (13) | C6—C8 | 1.5149 (15) |
O2—H2O | 0.922 (16) | C6—C9 | 1.5151 (14) |
O3—C5 | 1.2143 (11) | C6—C7 | 1.5176 (14) |
O4—C5 | 1.3191 (11) | C7—H7A | 0.996 (13) |
O4—C6 | 1.4981 (12) | C7—H7B | 0.976 (11) |
N1—C4 | 1.3928 (12) | C7—H7C | 0.981 (12) |
N1—C5 | 1.3937 (12) | C8—H8A | 1.023 (13) |
N1—C1 | 1.4178 (12) | C8—H8B | 0.989 (12) |
C1—C2 | 1.3676 (14) | C8—H8C | 0.985 (13) |
C1—B1 | 1.5665 (15) | C9—H9A | 0.973 (12) |
C2—C3 | 1.4211 (15) | C9—H9B | 0.980 (13) |
C2—H2 | 0.964 (10) | C9—H9C | 0.983 (12) |
C3—C4 | 1.3474 (15) | ||
B1—O1—H1O | 108.9 (9) | O4—C6—C7 | 109.13 (8) |
B1—O2—H2O | 111.6 (9) | C8—C6—C7 | 113.78 (9) |
C5—O4—C6 | 120.61 (7) | C9—C6—C7 | 111.13 (9) |
C4—N1—C5 | 123.55 (8) | C6—C7—H7A | 109.4 (7) |
C4—N1—C1 | 109.10 (8) | C6—C7—H7B | 113.4 (6) |
C5—N1—C1 | 127.35 (8) | H7A—C7—H7B | 108.4 (10) |
C2—C1—N1 | 105.15 (8) | C6—C7—H7C | 108.2 (6) |
C2—C1—B1 | 123.90 (9) | H7A—C7—H7C | 109.3 (9) |
N1—C1—B1 | 130.94 (9) | H7B—C7—H7C | 108.1 (9) |
C1—C2—C3 | 109.95 (9) | C6—C8—H8A | 110.3 (7) |
C1—C2—H2 | 124.0 (6) | C6—C8—H8B | 112.2 (7) |
C3—C2—H2 | 126.0 (6) | H8A—C8—H8B | 111.5 (9) |
C4—C3—C2 | 107.35 (9) | C6—C8—H8C | 108.5 (7) |
C4—C3—H3 | 126.8 (7) | H8A—C8—H8C | 107.8 (9) |
C2—C3—H3 | 125.9 (7) | H8B—C8—H8C | 106.2 (9) |
C3—C4—N1 | 108.44 (9) | C6—C9—H9A | 111.0 (7) |
C3—C4—H4 | 132.4 (6) | C6—C9—H9B | 109.2 (7) |
N1—C4—H4 | 119.1 (6) | H9A—C9—H9B | 108.6 (10) |
O3—C5—O4 | 125.51 (9) | C6—C9—H9C | 108.6 (7) |
O3—C5—N1 | 123.88 (8) | H9A—C9—H9C | 109.1 (10) |
O4—C5—N1 | 110.60 (8) | H9B—C9—H9C | 110.4 (9) |
O4—C6—C8 | 109.64 (8) | O2—B1—O1 | 119.54 (10) |
O4—C6—C9 | 101.06 (8) | O2—B1—C1 | 114.96 (9) |
C8—C6—C9 | 111.34 (9) | O1—B1—C1 | 125.49 (9) |
C4—N1—C1—C2 | 0.54 (10) | C4—N1—C5—O3 | 178.49 (9) |
C5—N1—C1—C2 | −179.63 (8) | C1—N1—C5—O3 | −1.32 (14) |
C4—N1—C1—B1 | 179.79 (9) | C4—N1—C5—O4 | −2.55 (12) |
C5—N1—C1—B1 | −0.38 (15) | C1—N1—C5—O4 | 177.64 (8) |
N1—C1—C2—C3 | −0.70 (10) | C5—O4—C6—C8 | −64.93 (11) |
B1—C1—C2—C3 | 179.99 (9) | C5—O4—C6—C9 | 177.47 (8) |
C1—C2—C3—C4 | 0.62 (11) | C5—O4—C6—C7 | 60.31 (11) |
C2—C3—C4—N1 | −0.26 (11) | C2—C1—B1—O2 | −1.97 (14) |
C5—N1—C4—C3 | 179.99 (8) | N1—C1—B1—O2 | 178.91 (9) |
C1—N1—C4—C3 | −0.17 (10) | C2—C1—B1—O1 | 176.28 (10) |
C6—O4—C5—O3 | 3.95 (14) | N1—C1—B1—O1 | −2.85 (16) |
C6—O4—C5—N1 | −174.99 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3 | 0.917 (15) | 1.704 (15) | 2.5941 (10) | 162.9 (13) |
O2—H2O···O1i | 0.922 (16) | 1.855 (17) | 2.7728 (11) | 173.7 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C9H14BNO4 |
Mr | 211.02 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 12.9179 (12), 9.5885 (7), 17.5811 (15) |
V (Å3) | 2177.7 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.71 × 0.34 × 0.22 |
Data collection | |
Diffractometer | Kuma KM4 CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction 2005) |
Tmin, Tmax | 0.95, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19290, 2713, 1911 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.076, 0.97 |
No. of reflections | 2713 |
No. of parameters | 193 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.26, −0.19 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3 | 0.917 (15) | 1.704 (15) | 2.5941 (10) | 162.9 (13) |
O2—H2O···O1i | 0.922 (16) | 1.855 (17) | 2.7728 (11) | 173.7 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the Aldrich Chemical Company through the donation of chemicals and equipment and by the Warsaw University of Technology. The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England. Google Scholar
Parry, P. R., Changsheng, W., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (2002). J. Org. Chem. 67, 7541–7543. Web of Science CSD CrossRef PubMed CAS Google Scholar
Saygili, N., Batsanov, A. S. & Bryce, M. R. (2004). Org. Biomol. Chem. 2, 852–853. Web of Science CSD CrossRef PubMed CAS Google Scholar
Seminario, J. M., Zacarias, A. G. & Tour, J. M. (1998). J. Am. Chem. Soc. 120, 3970–3974. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thompson, A. E., Hughes, G., Batsanov, A. S., Bryce, M. R., Parry, P. R. & Tarbit, B. (2005). J. Org. Chem. 70, 388–39. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, W., Gao, X. & Wang, B. (2002). Curr. Org. Chem. 6, 1285–1317. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen-containing boronic acids are the object of interest to many chemists because of their application as potential saccharide sensors (Wang et al., 2002). However, no crystal structure of any boronic acid containing a pyrrole ring has been elucidated to date. The only crystal data concerning nitrogen-containing heterocyclic boronic acids involve some pyrydine (Parry et al., 2002), (Thompson et al., 2005), (Dabrowski et al., 2006) and pyrimidine (Saygili et al., 2004) derivatives.
The molecular structure of the title compound C9H14BO4N (I) is shown in Fig. 1. The carbonyl and boronic acid groups are essentially coplanar with the pyrrole ring [torsion angles O3—C5—N1—C1 = -1.31 (1)° and N1—C1—B1—O1 = -2.8 (2)° respectively]. The conformation between C9 from the tert-butyl- and the carbonyl groups is antiperiplanar. The boronic acid group has an exo-endo conformation. The exo-oriented OH is engaged in an intramolecular O—H···O interaction with O3. The endo- oriented one, instead, is involved into intermolecular hydrogen bonding to form centrosymmetric dimers (Fig. 2). The supramolecular assembly is achieved through interactions involving tert-butyl groups, forming infinite chains along the crystallographic b axis. Examination of the crystal packing reveals the presence of face to face, center to edge stacking (FFCE) (Seminario et al., 1998). These interactions are represented by a relatively short distance (3.369 (8) Å) between the pyrrole ring centroid and the nitrogen atom from neighbouring molecules (Fig. 3).