organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-(di­hydroxyboryl)pyrrole-1-carboxylate

aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664, Warsaw, Poland
*Correspondence e-mail: tomasz_klis@interia.pl

(Received 21 March 2008; accepted 6 May 2008; online 10 May 2008)

In the title compound, C9H14BNO4, the carbonyl and boronic acid groups are essentially coplanar with the pyrrole ring and the boronic acid group has an exo-endo conformation. The exo-oriented OH is engaged in an intra­molecular O—H⋯O inter­action, while the endo-oriented one is involved in inter­molecular hydrogen bonding to form centrosymmetric dimers. A supra­molecular assembly is achieved through inter­actions involving the tert-butyl groups, forming infinite chains along the crystallographic b axis. There are, in addition, face-to-face and center-to-edge stacking inter­actions [distance between the pyrrole ring centroid and an N atom from a neighbouring mol­ecule = 3.369 (8) Å].

Related literature

For related literature, see: Dabrowski et al. (2006[Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702-o704.]); Parry et al. (2002[Parry, P. R., Changsheng, W., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (2002). J. Org. Chem. 67, 7541-7543.]); Saygili et al. (2004[Saygili, N., Batsanov, A. S. & Bryce, M. R. (2004). Org. Biomol. Chem. 2, 852-853.]); Seminario et al. (1998[Seminario, J. M., Zacarias, A. G. & Tour, J. M. (1998). J. Am. Chem. Soc. 120, 3970-3974.]); Thompson et al. (2005[Thompson, A. E., Hughes, G., Batsanov, A. S., Bryce, M. R., Parry, P. R. & Tarbit, B. (2005). J. Org. Chem. 70, 388-39.]); Wang et al. (2002[Wang, W., Gao, X. & Wang, B. (2002). Curr. Org. Chem. 6, 1285-1317.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14BNO4

  • Mr = 211.02

  • Orthorhombic, P b c a

  • a = 12.9179 (12) Å

  • b = 9.5885 (7) Å

  • c = 17.5811 (15) Å

  • V = 2177.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 (2) K

  • 0.71 × 0.34 × 0.22 mm

Data collection
  • Kuma KM4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]) Tmin = 0.95, Tmax = 0.98

  • 19290 measured reflections

  • 2713 independent reflections

  • 1911 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 0.96

  • 2713 reflections

  • 193 parameters

  • All H-atom parameters refined

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.917 (15) 1.704 (15) 2.5941 (10) 162.9 (13)
O2—H2O⋯O1i 0.922 (16) 1.855 (17) 2.7728 (11) 173.7 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen-containing boronic acids are the object of interest to many chemists because of their application as potential saccharide sensors (Wang et al., 2002). However, no crystal structure of any boronic acid containing a pyrrole ring has been elucidated to date. The only crystal data concerning nitrogen-containing heterocyclic boronic acids involve some pyrydine (Parry et al., 2002), (Thompson et al., 2005), (Dabrowski et al., 2006) and pyrimidine (Saygili et al., 2004) derivatives.

The molecular structure of the title compound C9H14BO4N (I) is shown in Fig. 1. The carbonyl and boronic acid groups are essentially coplanar with the pyrrole ring [torsion angles O3—C5—N1—C1 = -1.31 (1)° and N1—C1—B1—O1 = -2.8 (2)° respectively]. The conformation between C9 from the tert-butyl- and the carbonyl groups is antiperiplanar. The boronic acid group has an exo-endo conformation. The exo-oriented OH is engaged in an intramolecular O—H···O interaction with O3. The endo- oriented one, instead, is involved into intermolecular hydrogen bonding to form centrosymmetric dimers (Fig. 2). The supramolecular assembly is achieved through interactions involving tert-butyl groups, forming infinite chains along the crystallographic b axis. Examination of the crystal packing reveals the presence of face to face, center to edge stacking (FFCE) (Seminario et al., 1998). These interactions are represented by a relatively short distance (3.369 (8) Å) between the pyrrole ring centroid and the nitrogen atom from neighbouring molecules (Fig. 3).

Related literature top

For related literature, see: Dabrowski et al. (2006); Parry et al. (2002); Saygili et al. (2004); Seminario et al. (1998); Thompson et al. (2005); Wang et al. (2002).

Experimental top

N-tert-butoxycarbonyl-pyrrole-2-boronic acid was obtained from Aldrich, crystallized from tetrahydrofurane and dried in air.

Refinement top

All of hydrogen atoms were located geometrically and their positions were refined while temperature factors were not. The maximum electron-density peak in the final difference map is 0.80 Å from atom C1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding pattern for (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing for (I), showing π-π interactions as dotted lines [Symmetry codes: (i) -1/2 + x, 1.5 - y, 1 - z; (ii) 0.5 - x, -1/2 + y, z].
tert-Butyl 2-(dihydroxyboryl)pyrrole-1-carboxylate top
Crystal data top
C9H14BNO4F(000) = 896
Mr = 211.02Dx = 1.287 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 19290 reflections
a = 12.9179 (12) Åθ = 2.8–28.7°
b = 9.5885 (7) ŵ = 0.10 mm1
c = 17.5811 (15) ÅT = 100 K
V = 2177.7 (3) Å3Prismatic, colourless
Z = 80.71 × 0.34 × 0.22 mm
Data collection top
Kuma KM4 CCD
diffractometer
2713 independent reflections
Radiation source: fine-focus sealed tube1911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.6479 pixels mm-1θmax = 28.7°, θmin = 2.8°
ω scanh = 1717
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction 2005)
k = 1212
Tmin = 0.95, Tmax = 0.98l = 2323
19290 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
2713 reflectionsΔρmax = 0.26 e Å3
193 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (7)
Crystal data top
C9H14BNO4V = 2177.7 (3) Å3
Mr = 211.02Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.9179 (12) ŵ = 0.10 mm1
b = 9.5885 (7) ÅT = 100 K
c = 17.5811 (15) Å0.71 × 0.34 × 0.22 mm
Data collection top
Kuma KM4 CCD
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction 2005)
1911 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.98Rint = 0.021
19290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076All H-atom parameters refined
S = 0.97Δρmax = 0.26 e Å3
2713 reflectionsΔρmin = 0.19 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54350 (6)0.63771 (7)0.45212 (4)0.02586 (19)
O20.40336 (6)0.64180 (8)0.53731 (4)0.02619 (19)
O30.60617 (5)0.83554 (7)0.36263 (4)0.02260 (18)
O40.56150 (5)1.04637 (7)0.31656 (4)0.02186 (18)
N10.46192 (6)0.95162 (8)0.40642 (4)0.01800 (19)
C10.42176 (8)0.85423 (10)0.45945 (5)0.0187 (2)
C20.33504 (8)0.91604 (11)0.48868 (6)0.0223 (2)
C30.32126 (8)1.05007 (11)0.45569 (6)0.0242 (2)
C40.39900 (8)1.06957 (10)0.40571 (6)0.0218 (2)
C50.54985 (8)0.93691 (9)0.36119 (5)0.0186 (2)
C60.64575 (8)1.04984 (10)0.25803 (5)0.0225 (2)
C70.63032 (10)0.93008 (12)0.20274 (6)0.0285 (3)
C80.75028 (9)1.04896 (12)0.29709 (6)0.0269 (2)
C90.62477 (10)1.18889 (12)0.22011 (7)0.0304 (3)
B10.46066 (9)0.70564 (12)0.48297 (6)0.0204 (2)
H1O0.5763 (11)0.6964 (15)0.4187 (8)0.056 (4)*
H2O0.4234 (12)0.5504 (17)0.5442 (8)0.060 (5)*
H20.2915 (8)0.8741 (11)0.5269 (5)0.018 (2)*
H30.2680 (9)1.1122 (12)0.4668 (6)0.028 (3)*
H40.4168 (8)1.1463 (11)0.3729 (6)0.020 (3)*
H7A0.5580 (11)0.9321 (12)0.1830 (7)0.038 (3)*
H7B0.6429 (9)0.8387 (12)0.2253 (6)0.029 (3)*
H7C0.6788 (9)0.9424 (11)0.1603 (6)0.029 (3)*
H8A0.7576 (9)1.1342 (13)0.3317 (7)0.038 (3)*
H8B0.7629 (9)0.9613 (12)0.3252 (6)0.031 (3)*
H8C0.8046 (10)1.0547 (12)0.2579 (7)0.036 (3)*
H9A0.6288 (8)1.2649 (12)0.2567 (7)0.034 (3)*
H9B0.5551 (10)1.1878 (13)0.1981 (6)0.040 (3)*
H9C0.6768 (9)1.2037 (12)0.1802 (7)0.039 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (4)0.0218 (4)0.0320 (4)0.0014 (3)0.0056 (3)0.0085 (3)
O20.0255 (4)0.0253 (4)0.0278 (4)0.0001 (3)0.0051 (3)0.0059 (3)
O30.0227 (4)0.0186 (4)0.0265 (4)0.0021 (3)0.0044 (3)0.0032 (3)
O40.0240 (4)0.0180 (4)0.0235 (4)0.0007 (3)0.0031 (3)0.0038 (3)
N10.0172 (4)0.0178 (4)0.0190 (4)0.0001 (3)0.0011 (3)0.0005 (3)
C10.0181 (5)0.0220 (5)0.0159 (4)0.0040 (4)0.0023 (4)0.0013 (4)
C20.0188 (5)0.0286 (6)0.0194 (5)0.0018 (4)0.0009 (4)0.0039 (4)
C30.0195 (5)0.0264 (6)0.0267 (5)0.0049 (5)0.0040 (4)0.0071 (4)
C40.0220 (5)0.0194 (5)0.0239 (5)0.0029 (4)0.0061 (4)0.0022 (4)
C50.0203 (5)0.0170 (5)0.0186 (5)0.0027 (4)0.0026 (4)0.0011 (4)
C60.0245 (6)0.0228 (5)0.0203 (5)0.0023 (4)0.0036 (4)0.0031 (4)
C70.0341 (7)0.0281 (6)0.0233 (6)0.0037 (5)0.0027 (5)0.0002 (4)
C80.0258 (6)0.0270 (6)0.0278 (6)0.0045 (5)0.0011 (5)0.0047 (5)
C90.0339 (7)0.0270 (6)0.0304 (6)0.0027 (5)0.0012 (5)0.0087 (5)
B10.0193 (6)0.0230 (6)0.0190 (5)0.0038 (5)0.0027 (5)0.0013 (5)
Geometric parameters (Å, º) top
O1—B11.3652 (13)C3—H30.931 (12)
O1—H1O0.917 (15)C4—H40.963 (10)
O2—B11.3547 (13)C6—C81.5149 (15)
O2—H2O0.922 (16)C6—C91.5151 (14)
O3—C51.2143 (11)C6—C71.5176 (14)
O4—C51.3191 (11)C7—H7A0.996 (13)
O4—C61.4981 (12)C7—H7B0.976 (11)
N1—C41.3928 (12)C7—H7C0.981 (12)
N1—C51.3937 (12)C8—H8A1.023 (13)
N1—C11.4178 (12)C8—H8B0.989 (12)
C1—C21.3676 (14)C8—H8C0.985 (13)
C1—B11.5665 (15)C9—H9A0.973 (12)
C2—C31.4211 (15)C9—H9B0.980 (13)
C2—H20.964 (10)C9—H9C0.983 (12)
C3—C41.3474 (15)
B1—O1—H1O108.9 (9)O4—C6—C7109.13 (8)
B1—O2—H2O111.6 (9)C8—C6—C7113.78 (9)
C5—O4—C6120.61 (7)C9—C6—C7111.13 (9)
C4—N1—C5123.55 (8)C6—C7—H7A109.4 (7)
C4—N1—C1109.10 (8)C6—C7—H7B113.4 (6)
C5—N1—C1127.35 (8)H7A—C7—H7B108.4 (10)
C2—C1—N1105.15 (8)C6—C7—H7C108.2 (6)
C2—C1—B1123.90 (9)H7A—C7—H7C109.3 (9)
N1—C1—B1130.94 (9)H7B—C7—H7C108.1 (9)
C1—C2—C3109.95 (9)C6—C8—H8A110.3 (7)
C1—C2—H2124.0 (6)C6—C8—H8B112.2 (7)
C3—C2—H2126.0 (6)H8A—C8—H8B111.5 (9)
C4—C3—C2107.35 (9)C6—C8—H8C108.5 (7)
C4—C3—H3126.8 (7)H8A—C8—H8C107.8 (9)
C2—C3—H3125.9 (7)H8B—C8—H8C106.2 (9)
C3—C4—N1108.44 (9)C6—C9—H9A111.0 (7)
C3—C4—H4132.4 (6)C6—C9—H9B109.2 (7)
N1—C4—H4119.1 (6)H9A—C9—H9B108.6 (10)
O3—C5—O4125.51 (9)C6—C9—H9C108.6 (7)
O3—C5—N1123.88 (8)H9A—C9—H9C109.1 (10)
O4—C5—N1110.60 (8)H9B—C9—H9C110.4 (9)
O4—C6—C8109.64 (8)O2—B1—O1119.54 (10)
O4—C6—C9101.06 (8)O2—B1—C1114.96 (9)
C8—C6—C9111.34 (9)O1—B1—C1125.49 (9)
C4—N1—C1—C20.54 (10)C4—N1—C5—O3178.49 (9)
C5—N1—C1—C2179.63 (8)C1—N1—C5—O31.32 (14)
C4—N1—C1—B1179.79 (9)C4—N1—C5—O42.55 (12)
C5—N1—C1—B10.38 (15)C1—N1—C5—O4177.64 (8)
N1—C1—C2—C30.70 (10)C5—O4—C6—C864.93 (11)
B1—C1—C2—C3179.99 (9)C5—O4—C6—C9177.47 (8)
C1—C2—C3—C40.62 (11)C5—O4—C6—C760.31 (11)
C2—C3—C4—N10.26 (11)C2—C1—B1—O21.97 (14)
C5—N1—C4—C3179.99 (8)N1—C1—B1—O2178.91 (9)
C1—N1—C4—C30.17 (10)C2—C1—B1—O1176.28 (10)
C6—O4—C5—O33.95 (14)N1—C1—B1—O12.85 (16)
C6—O4—C5—N1174.99 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.917 (15)1.704 (15)2.5941 (10)162.9 (13)
O2—H2O···O1i0.922 (16)1.855 (17)2.7728 (11)173.7 (13)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H14BNO4
Mr211.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.9179 (12), 9.5885 (7), 17.5811 (15)
V3)2177.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.71 × 0.34 × 0.22
Data collection
DiffractometerKuma KM4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction 2005)
Tmin, Tmax0.95, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
19290, 2713, 1911
Rint0.021
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 0.97
No. of reflections2713
No. of parameters193
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.917 (15)1.704 (15)2.5941 (10)162.9 (13)
O2—H2O···O1i0.922 (16)1.855 (17)2.7728 (11)173.7 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Aldrich Chemical Company through the donation of chemicals and equipment and by the Warsaw University of Technology. The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.  Google Scholar
First citationParry, P. R., Changsheng, W., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (2002). J. Org. Chem. 67, 7541–7543.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaygili, N., Batsanov, A. S. & Bryce, M. R. (2004). Org. Biomol. Chem. 2, 852–853.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeminario, J. M., Zacarias, A. G. & Tour, J. M. (1998). J. Am. Chem. Soc. 120, 3970–3974.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, A. E., Hughes, G., Batsanov, A. S., Bryce, M. R., Parry, P. R. & Tarbit, B. (2005). J. Org. Chem. 70, 388–39.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, W., Gao, X. & Wang, B. (2002). Curr. Org. Chem. 6, 1285–1317.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds