organic compounds
4-(4-Ethylphenyldiazenyl)phenol
aLaboratory of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, NL-9747 AG Groningen, The Netherlands, and bCrystal Structure Center, Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
*Correspondence e-mail: a.meetsma@rug.nl
The 14H14N2O, determined at 100 K, shows that the molecules are not planar in the solid state, in contrast to other diazene (azobenzene) derivatives. The dihedral angle between the planes of the two aromatic rings is 42.32 (7)°. The molecules are linked by intermolecular O—H⋯N hydrogen bonds, forming an infinite one-dimensional chain.
of the title compound, CRelated literature
For related literature, see: Bowes et al. (2003); Brown et al. (1971); Burger & Ramberger (1979); Enkelmann et al. (1978); Kageyama et al. (1982, 1985, 1986); Kashino et al. (1979); Kocaokutgen et al. (2003); McWilliam et al. (2001); Okamoto et al. (1983); Okamoto & Nakano (1994); Ruokolainen et al. (1996, 1998, 1999); Shibaev et al. (2003); Soylu et al. (2004); Zhang et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and PLUTO (Meetsma, 2007); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S160053680801338X/bg2174sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801338X/bg2174Isup2.hkl
To a vigorously stirred solution of 1.21 g of ethylaniline (0.01 mol) in 3 ml of water and 3 ml of concentrated hydrochloric acid, a solution of 2.8 g sodiumnitrite in 20 ml water was added drop wise while maintaining the temperature during the reaction at 0 °C. The resulting pale yellow mixture was added drop wise to a phenolate ion solution which was prepared by dissolving 0.94 g phenol (0.01 mol) and 0.84 g potassium hydroxide (0.015 mol) in 20 ml of methanol. Dichloromethane was used to extract the product from the aquatic reaction mixture, followed by 5 times washing with water. The solvent was then removed by evaporation. Subsequently the crude product was purified over a silica gel column using a dichloromethane / n-hexane mixture (3:1 v/v). The final solution was evaporated to dryness and dried further overnight in vacuum at 40°C. The yield of the bright orange crystalline solid was 61%. Single crystals of (I) suitable for the x-ray analysis were grown by slow evaporation from a dichloromethane solution at room temperature in air.
Analysis δ p.p.m. = 7.85 (d, 2H, H-3 and H-5), 7.79 p.p.m. (d, 2H, H-3' and H-5'), 7.31 p.p.m. (d, 2H, H-2' and H-6'), 6.92 p.p.m. (d, 2H, H-2 and H-6), 5.09 p.p.m. (s, 1H, –OH), 2.67 p.p.m. (t, 2H, HA), 1.57 p.p.m. (m, 2H, –CH2-)), 1.26 p.p.m. (t, 3H, CH3—CH2). Mass (Jeol JMS 600H EI+ 70 eV): m/z = 226 (calculated: 226.3)
(DSC, Q1000 TA instruments; 10°C/min): melting point (onset) 120°C. H-NMR (Varian VXR 300 MHz, CDCl3):All hydrogen atoms were located in a difference Fourier map and refined with isotropic displacement parameters.
C—H distances spanned the range of 0.943 (16)–1.011 (18) Å, and U(H) factors, 0.054 (6) to 0.019 (4) Å-2.
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and PLUTO (Meetsma, 2007); software used to prepare material for publication: PLATON (Spek, 2003).C14H14N2O | F(000) = 480 |
Mr = 226.28 | Dx = 1.288 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3059 reflections |
a = 7.5261 (9) Å | θ = 3.0–27.5° |
b = 13.4298 (15) Å | µ = 0.08 mm−1 |
c = 11.6412 (13) Å | T = 100 K |
β = 97.4001 (15)° | Block, orange |
V = 1166.8 (2) Å3 | 0.42 × 0.33 × 0.22 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 2276 independent reflections |
Radiation source: fine focus sealed Siemens Mo tube | 1848 reflections with I > 2σ(I) |
Parallel mounted graphite monochromator | Rint = 0.028 |
Detector resolution: 66.06 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | k = −16→15 |
Tmin = 0.956, Tmax = 0.982 | l = −14→14 |
8700 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.107 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2293P] where P = (Fo2 + 2Fc2)/3 |
2276 reflections | (Δ/σ)max < 0.001 |
210 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C14H14N2O | V = 1166.8 (2) Å3 |
Mr = 226.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.5261 (9) Å | µ = 0.08 mm−1 |
b = 13.4298 (15) Å | T = 100 K |
c = 11.6412 (13) Å | 0.42 × 0.33 × 0.22 mm |
β = 97.4001 (15)° |
Bruker SMART APEX CCD area-detector diffractometer | 2276 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1848 reflections with I > 2σ(I) |
Tmin = 0.956, Tmax = 0.982 | Rint = 0.028 |
8700 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.107 | All H-atom parameters refined |
S = 1.04 | Δρmax = 0.17 e Å−3 |
2276 reflections | Δρmin = −0.24 e Å−3 |
210 parameters |
Experimental. The final unit cell was obtained from the xyz centroids of 3059 reflections after integration using the SAINTPLUS software package (Bruker, 2007). Reduced cell calculations did not indicate any higher metric lattice symmetry and examination of the final atomic coordinates of the structure did not yield extra symmetry elements (Spek, 1988; Le Page 1987, 1988) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.04406 (14) | 0.48064 (7) | 0.32923 (9) | 0.0263 (3) | |
N1 | 0.80788 (15) | 0.08833 (8) | 0.34477 (9) | 0.0188 (3) | |
N2 | 0.75956 (15) | 0.06025 (8) | 0.43960 (10) | 0.0199 (3) | |
C1 | 0.98453 (18) | 0.38503 (10) | 0.32795 (11) | 0.0193 (4) | |
C2 | 0.99777 (18) | 0.31861 (10) | 0.23708 (12) | 0.0201 (4) | |
C3 | 0.93839 (18) | 0.22132 (10) | 0.24543 (12) | 0.0190 (4) | |
C4 | 0.86411 (17) | 0.18959 (10) | 0.34290 (11) | 0.0175 (4) | |
C5 | 0.84621 (18) | 0.25739 (10) | 0.43237 (12) | 0.0190 (4) | |
C6 | 0.90547 (18) | 0.35397 (10) | 0.42467 (12) | 0.0204 (4) | |
C7 | 0.69280 (17) | −0.03918 (10) | 0.43646 (12) | 0.0190 (4) | |
C8 | 0.59745 (19) | −0.08196 (11) | 0.33765 (12) | 0.0223 (4) | |
C9 | 0.53750 (19) | −0.17915 (11) | 0.34156 (13) | 0.0232 (4) | |
C10 | 0.57357 (18) | −0.23637 (10) | 0.44256 (12) | 0.0214 (4) | |
C11 | 0.66447 (19) | −0.19152 (11) | 0.54092 (13) | 0.0228 (4) | |
C12 | 0.72082 (19) | −0.09323 (11) | 0.53944 (12) | 0.0216 (4) | |
C13 | 0.5212 (2) | −0.34494 (11) | 0.44295 (14) | 0.0260 (5) | |
C14 | 0.6554 (2) | −0.41051 (12) | 0.39094 (16) | 0.0298 (5) | |
H1 | 1.096 (3) | 0.4963 (14) | 0.2651 (19) | 0.054 (6)* | |
H2 | 1.0497 (19) | 0.3401 (11) | 0.1707 (13) | 0.025 (4)* | |
H3 | 0.9523 (19) | 0.1728 (11) | 0.1835 (13) | 0.022 (4)* | |
H5 | 0.7933 (19) | 0.2348 (10) | 0.4993 (13) | 0.019 (4)* | |
H6 | 0.894 (2) | 0.4036 (11) | 0.4876 (13) | 0.023 (4)* | |
H8 | 0.569 (2) | −0.0420 (12) | 0.2682 (14) | 0.026 (4)* | |
H9 | 0.472 (2) | −0.2076 (11) | 0.2751 (14) | 0.025 (4)* | |
H11 | 0.690 (2) | −0.2308 (11) | 0.6131 (13) | 0.023 (4)* | |
H12 | 0.781 (2) | −0.0609 (11) | 0.6080 (14) | 0.027 (4)* | |
H13 | 0.515 (2) | −0.3675 (13) | 0.5252 (16) | 0.043 (5)* | |
H13' | 0.401 (2) | −0.3550 (12) | 0.3973 (15) | 0.038 (5)* | |
H14 | 0.779 (3) | −0.4016 (13) | 0.4330 (16) | 0.047 (5)* | |
H14' | 0.662 (2) | −0.3941 (13) | 0.3112 (17) | 0.041 (5)* | |
H14" | 0.624 (2) | −0.4825 (13) | 0.3936 (15) | 0.038 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0395 (6) | 0.0160 (5) | 0.0260 (6) | −0.0050 (4) | 0.0138 (5) | −0.0013 (4) |
N1 | 0.0182 (6) | 0.0180 (6) | 0.0204 (6) | 0.0009 (4) | 0.0032 (5) | 0.0016 (5) |
N2 | 0.0207 (6) | 0.0169 (6) | 0.0224 (6) | 0.0011 (4) | 0.0042 (5) | 0.0009 (5) |
C1 | 0.0215 (7) | 0.0149 (7) | 0.0211 (7) | 0.0007 (5) | 0.0017 (5) | 0.0019 (5) |
C2 | 0.0220 (7) | 0.0201 (7) | 0.0186 (7) | 0.0004 (5) | 0.0046 (5) | 0.0025 (6) |
C3 | 0.0197 (7) | 0.0176 (7) | 0.0195 (7) | 0.0015 (5) | 0.0020 (5) | −0.0015 (6) |
C4 | 0.0173 (7) | 0.0148 (7) | 0.0202 (7) | 0.0009 (5) | 0.0017 (5) | 0.0000 (5) |
C5 | 0.0196 (7) | 0.0195 (7) | 0.0184 (7) | 0.0020 (5) | 0.0042 (5) | 0.0022 (5) |
C6 | 0.0241 (7) | 0.0175 (7) | 0.0201 (7) | 0.0018 (5) | 0.0044 (6) | −0.0026 (5) |
C7 | 0.0180 (7) | 0.0155 (7) | 0.0244 (7) | 0.0017 (5) | 0.0067 (5) | −0.0003 (5) |
C8 | 0.0214 (7) | 0.0216 (8) | 0.0240 (7) | 0.0006 (6) | 0.0037 (6) | 0.0038 (6) |
C9 | 0.0212 (7) | 0.0235 (8) | 0.0248 (8) | −0.0027 (6) | 0.0029 (6) | −0.0026 (6) |
C10 | 0.0173 (7) | 0.0185 (7) | 0.0298 (8) | −0.0005 (5) | 0.0082 (6) | −0.0005 (6) |
C11 | 0.0231 (7) | 0.0205 (8) | 0.0253 (8) | 0.0012 (6) | 0.0048 (6) | 0.0059 (6) |
C12 | 0.0220 (8) | 0.0219 (8) | 0.0210 (7) | −0.0004 (6) | 0.0034 (6) | −0.0001 (6) |
C13 | 0.0258 (8) | 0.0192 (8) | 0.0341 (9) | −0.0036 (6) | 0.0078 (7) | 0.0008 (6) |
C14 | 0.0288 (9) | 0.0209 (8) | 0.0398 (10) | −0.0010 (6) | 0.0044 (7) | −0.0051 (7) |
O1—C1 | 1.3594 (17) | C10—C13 | 1.511 (2) |
O1—H1 | 0.91 (2) | C11—C12 | 1.387 (2) |
N1—N2 | 1.2636 (16) | C13—C14 | 1.523 (2) |
N1—C4 | 1.4252 (17) | C2—H2 | 0.954 (15) |
N2—C7 | 1.4255 (17) | C3—H3 | 0.987 (15) |
C1—C6 | 1.4030 (19) | C5—H5 | 0.968 (15) |
C1—C2 | 1.3971 (19) | C6—H6 | 1.002 (15) |
C2—C3 | 1.3884 (19) | C8—H8 | 0.971 (16) |
C3—C4 | 1.3946 (19) | C9—H9 | 0.943 (16) |
C4—C5 | 1.4029 (19) | C11—H11 | 0.990 (15) |
C5—C6 | 1.3783 (19) | C12—H12 | 0.968 (16) |
C7—C8 | 1.398 (2) | C13—H13 | 1.011 (18) |
C7—C12 | 1.394 (2) | C13—H13' | 0.998 (16) |
C8—C9 | 1.384 (2) | C14—H14 | 1.00 (2) |
C9—C10 | 1.402 (2) | C14—H14' | 0.96 (2) |
C10—C11 | 1.393 (2) | C14—H14" | 0.997 (17) |
O1···N1i | 2.8316 (15) | C8···H2iii | 2.868 (15) |
O1···C3i | 3.3541 (17) | C9···H14' | 3.069 (17) |
O1···H3i | 2.585 (15) | C10···H5v | 2.926 (15) |
O1···H6ii | 2.632 (15) | C13···H5v | 2.942 (14) |
N1···O1iii | 2.8316 (15) | C14···H8x | 2.932 (16) |
N1···H8 | 2.584 (16) | H1···N1i | 1.98 (2) |
N1···H1iii | 1.98 (2) | H1···N2i | 2.88 (2) |
N2···H5 | 2.449 (14) | H1···C3i | 3.034 (19) |
N2···H1iii | 2.88 (2) | H1···C4i | 2.92 (2) |
C2···C8i | 3.536 (2) | H1···C7i | 3.04 (2) |
C3···O1iii | 3.3541 (17) | H1···C8i | 2.93 (2) |
C4···C12iv | 3.494 (2) | H2···C7i | 2.926 (15) |
C5···C13v | 3.488 (2) | H2···C8i | 2.868 (15) |
C7···C7v | 3.5810 (19) | H3···O1iii | 2.585 (15) |
C8···C2iii | 3.536 (2) | H3···C5vi | 3.076 (15) |
C12···C4iv | 3.494 (2) | H3···C6vi | 3.010 (15) |
C13···C5v | 3.488 (2) | H5···N2 | 2.449 (14) |
C2···H5vi | 3.074 (15) | H5···C10v | 2.926 (15) |
C2···H11iv | 2.983 (15) | H5···C13v | 2.942 (14) |
C3···H13'vii | 3.040 (16) | H5···C2viii | 3.074 (15) |
C3···H11iv | 3.060 (15) | H5···C3viii | 2.991 (15) |
C3···H5vi | 2.991 (15) | H6···O1ii | 2.632 (15) |
C3···H1iii | 3.034 (19) | H8···N1 | 2.584 (16) |
C4···H1iii | 2.92 (2) | H8···C14vii | 2.932 (16) |
C4···H9vii | 3.049 (15) | H9···C4x | 3.049 (15) |
C5···H3viii | 3.076 (15) | H11···C2iv | 2.983 (15) |
C6···H14iv | 2.79 (2) | H11···C3iv | 3.060 (15) |
C6···H3viii | 3.010 (15) | H13'···C3x | 3.040 (16) |
C6···H14"ix | 3.040 (17) | H14···C6iv | 2.79 (2) |
C7···H2iii | 2.926 (15) | H14'···C9 | 3.069 (17) |
C7···H1iii | 3.04 (2) | H14"···C6xi | 3.040 (17) |
C8···H1iii | 2.93 (2) | ||
C1—O1—H1 | 112.6 (12) | C2—C3—H3 | 120.3 (9) |
N2—N1—C4 | 114.68 (10) | C4—C3—H3 | 118.9 (9) |
N1—N2—C7 | 113.41 (11) | C4—C5—H5 | 118.9 (8) |
O1—C1—C6 | 116.44 (12) | C6—C5—H5 | 121.2 (8) |
C2—C1—C6 | 119.79 (12) | C1—C6—H6 | 118.3 (9) |
O1—C1—C2 | 123.77 (12) | C5—C6—H6 | 121.3 (9) |
C1—C2—C3 | 119.53 (13) | C7—C8—H8 | 119.5 (10) |
C2—C3—C4 | 120.72 (13) | C9—C8—H8 | 120.7 (9) |
N1—C4—C3 | 117.06 (11) | C8—C9—H9 | 119.6 (9) |
C3—C4—C5 | 119.51 (12) | C10—C9—H9 | 119.4 (9) |
N1—C4—C5 | 123.43 (12) | C10—C11—H11 | 119.2 (9) |
C4—C5—C6 | 119.98 (13) | C12—C11—H11 | 119.4 (9) |
C1—C6—C5 | 120.41 (13) | C7—C12—H12 | 118.6 (9) |
N2—C7—C8 | 123.21 (12) | C11—C12—H12 | 121.9 (9) |
C8—C7—C12 | 119.88 (13) | C10—C13—H13 | 109.6 (10) |
N2—C7—C12 | 116.87 (12) | C10—C13—H13' | 110.4 (9) |
C7—C8—C9 | 119.70 (13) | C14—C13—H13 | 108.5 (9) |
C8—C9—C10 | 121.07 (13) | C14—C13—H13' | 108.2 (10) |
C9—C10—C13 | 120.62 (13) | H13—C13—H13' | 108.3 (13) |
C11—C10—C13 | 121.04 (13) | C13—C14—H14 | 111.0 (11) |
C9—C10—C11 | 118.30 (13) | C13—C14—H14' | 111.8 (10) |
C10—C11—C12 | 121.32 (13) | C13—C14—H14" | 112.1 (9) |
C7—C12—C11 | 119.57 (13) | H14—C14—H14' | 106.5 (14) |
C10—C13—C14 | 111.73 (12) | H14—C14—H14" | 108.1 (14) |
C1—C2—H2 | 119.8 (9) | H14'—C14—H14" | 107.1 (14) |
C3—C2—H2 | 120.7 (9) | ||
C4—N1—N2—C7 | 176.04 (11) | C4—C5—C6—C1 | −0.3 (2) |
N2—N1—C4—C3 | 172.74 (12) | N2—C7—C8—C9 | 179.83 (13) |
N2—N1—C4—C5 | −8.05 (18) | C12—C7—C8—C9 | −2.5 (2) |
N1—N2—C7—C8 | −33.70 (18) | N2—C7—C12—C11 | −177.78 (13) |
N1—N2—C7—C12 | 148.57 (12) | C8—C7—C12—C11 | 4.4 (2) |
O1—C1—C2—C3 | 177.87 (13) | C7—C8—C9—C10 | −1.2 (2) |
C6—C1—C2—C3 | −2.4 (2) | C8—C9—C10—C11 | 2.9 (2) |
O1—C1—C6—C5 | −178.04 (12) | C8—C9—C10—C13 | −174.80 (13) |
C2—C1—C6—C5 | 2.2 (2) | C9—C10—C11—C12 | −1.0 (2) |
C1—C2—C3—C4 | 0.7 (2) | C13—C10—C11—C12 | 176.74 (13) |
C2—C3—C4—N1 | −179.53 (12) | C9—C10—C13—C14 | 80.03 (17) |
C2—C3—C4—C5 | 1.2 (2) | C11—C10—C13—C14 | −97.60 (17) |
N1—C4—C5—C6 | 179.38 (12) | C10—C11—C12—C7 | −2.7 (2) |
C3—C4—C5—C6 | −1.4 (2) |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, −y, −z+1; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z−1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+1/2, z+1/2; (ix) x, y+1, z; (x) −x+1, y−1/2, −z+1/2; (xi) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.91 (2) | 1.98 (2) | 2.8316 (15) | 154.7 (17) |
C3—H3···O1iii | 0.987 (15) | 2.585 (15) | 3.3541 (17) | 134.7 (11) |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H14N2O |
Mr | 226.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.5261 (9), 13.4298 (15), 11.6412 (13) |
β (°) | 97.4001 (15) |
V (Å3) | 1166.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.42 × 0.33 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.956, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8700, 2276, 1848 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.107, 1.04 |
No. of reflections | 2276 |
No. of parameters | 210 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.17, −0.24 |
Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and PLUTO (Meetsma, 2007), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.91 (2) | 1.98 (2) | 2.8316 (15) | 154.7 (17) |
C3—H3···O1ii | 0.987 (15) | 2.585 (15) | 3.3541 (17) | 134.7 (11) |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2. |
Acknowledgements
Albert Kiewiet is acknowledged for performing the MS analysis.
References
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brown, A., Gillbro, T. & Nilsson, B. (1971). J. Polym. Sci. Part. A2, 9, 1509–1515. Google Scholar
Bruker, (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259–271. CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Enkelmann, V., Kapp, H. & Meyer, W. (1978). Acta Cryst. B34, 2350–2351. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kageyama, H., Hayashi, Y., Harada, S., Kai, Y. & Kasai, Y. (1985). Makromol. Chem. 186, 203–214. CrossRef CAS Google Scholar
Kageyama, H., Miki, K., Kasai, N., Mohri, H., Okamoto, Y. & Hatada, K. (1986). Bull. Chem. Soc. Jpn, 59, 2707–2710. CrossRef CAS Web of Science Google Scholar
Kageyama, H., Miki, K., Tanaka, N. & Kasai, N. (1982). Makromol. Chem. 183, 2863–2870. CSD CrossRef CAS Google Scholar
Kashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365–369. CrossRef CAS Web of Science Google Scholar
Kocaokutgen, H., Gür, M., Soylu, M. S. & Lönnecke, P. (2003). Acta Cryst. E59, o1613–o1615. Web of Science CSD CrossRef IUCr Journals Google Scholar
McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meetsma, A. (2007). PLUTO. University of Groningen, The Netherlands. Google Scholar
Okamoto, Y., Ishikura, M., Hatada, K. & Yuki, H. (1983). Polym. J. 15, 851–853. CrossRef CAS Web of Science Google Scholar
Okamoto, Y. & Nakano, T. (1994). Chem. Rev. 94, 349–372. CrossRef CAS Web of Science Google Scholar
Ruokolainen, J., Mäkinen, R., Torkkeli, M., Mäkelä, T., Serimaa, R., ten Brinke, G. & Ikkala, O. (1998). Science, 280, 557–560. Web of Science CrossRef CAS PubMed Google Scholar
Ruokolainen, J., ten Brinke, G. & Ikkala, O. (1999). Adv. Mater., 11, 777–780. CrossRef CAS Google Scholar
Ruokolainen, J., Torkkeli, M., Serimaa, R., Komanschek, B. E., Ikkala, O. & ten Brinke, G. (1996). Phys. Rev. E, 54, 6646–6649. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shibaev, V., Bobrovsky, A. & Boiko, N. (2003). Prog. Polym. Sci. 28, 729–836. Web of Science CrossRef CAS Google Scholar
Soylu, S., Kocaokutgen, H., Gür, M. & Lönnecke, P. (2004). Acta Cryst. C60, o498–o500. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, D.-C., Ge, L.-Q., Fei, Z.-H., Zhang, Y.-Q. & Yu, K.-B. (1998). Acta Cryst. C54, 1909–1911. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Azobenzenes are widely used as dyes, but also as photochemical switch using photo-isomerization by UV light to induce a conformational change from trans to cis and back. This principle has been explored extensively in order to exploit the isomerization for several applications. (Shibaev et al., 2003) The presence of the phenolic moiety makes it possible to form complexes with e.g. poly (4-vinylpyridine) homopolymer or with poly (4-vinylpyridine) containing block copolymers. These supramolecular comb-like polymeric structures give rise to hierarchical structure-in-structure morphologies comparable with the systems with poly (4-vinylpyridine) containing block co-polymers complexed with nona- or pentadecylphenol. (Ruokolainen et al., 1998, 1999) The molecular geometry of (I) and the adopted atom-numbering scheme are shown in the perspective view in Figure 1. The crystal structure is similar to several other azo compounds, (Kocaokutgen et al. 2003; Soylu et al. 2004; Zhang et al., 1998) The –N1=N2- bond length is 1.2636 (16) Å, indicating a double-bond character. Regarding the azo double bond the rings are in a trans configuration. In contrast to many other azocompounds the benzene rings of EPAP are not coplanar.