organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Ethyl­phenyl­diazen­yl)phenol

aLaboratory of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, NL-9747 AG Groningen, The Netherlands, and bCrystal Structure Center, Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
*Correspondence e-mail: a.meetsma@rug.nl

(Received 26 March 2008; accepted 6 May 2008; online 10 May 2008)

The crystal structure of the title compound, C14H14N2O, determined at 100 K, shows that the mol­ecules are not planar in the solid state, in contrast to other diazene (azobenzene) derivatives. The dihedral angle between the planes of the two aromatic rings is 42.32 (7)°. The mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds, forming an infinite one-dimensional chain.

Related literature

For related literature, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Brown et al. (1971[Brown, A., Gillbro, T. & Nilsson, B. (1971). J. Polym. Sci. Part. A2, 9, 1509-1515.]); Burger & Ramberger (1979[Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259-271.]); Enkelmann et al. (1978[Enkelmann, V., Kapp, H. & Meyer, W. (1978). Acta Cryst. B34, 2350-2351.]); Kageyama et al. (1982[Kageyama, H., Miki, K., Tanaka, N. & Kasai, N. (1982). Makromol. Chem. 183, 2863-2870.], 1985[Kageyama, H., Hayashi, Y., Harada, S., Kai, Y. & Kasai, Y. (1985). Makromol. Chem. 186, 203-214.], 1986[Kageyama, H., Miki, K., Kasai, N., Mohri, H., Okamoto, Y. & Hatada, K. (1986). Bull. Chem. Soc. Jpn, 59, 2707-2710.]); Kashino et al. (1979[Kashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365-369.]); Kocaokutgen et al. (2003[Kocaokutgen, H., Gür, M., Soylu, M. S. & Lönnecke, P. (2003). Acta Cryst. E59, o1613-o1615.]); McWilliam et al. (2001[McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942-945.]); Okamoto et al. (1983[Okamoto, Y., Ishikura, M., Hatada, K. & Yuki, H. (1983). Polym. J. 15, 851-853.]); Okamoto & Nakano (1994[Okamoto, Y. & Nakano, T. (1994). Chem. Rev. 94, 349-372.]); Ruokolainen et al. (1996[Ruokolainen, J., Torkkeli, M., Serimaa, R., Komanschek, B. E., Ikkala, O. & ten Brinke, G. (1996). Phys. Rev. E, 54, 6646-6649.], 1998[Ruokolainen, J., Mäkinen, R., Torkkeli, M., Mäkelä, T., Serimaa, R., ten Brinke, G. & Ikkala, O. (1998). Science, 280, 557-560.], 1999[Ruokolainen, J., ten Brinke, G. & Ikkala, O. (1999). Adv. Mater., 11, 777-780.]); Shibaev et al. (2003[Shibaev, V., Bobrovsky, A. & Boiko, N. (2003). Prog. Polym. Sci. 28, 729-836.]); Soylu et al. (2004[Soylu, S., Kocaokutgen, H., Gür, M. & Lönnecke, P. (2004). Acta Cryst. C60, o498-o500.]); Zhang et al. (1998[Zhang, D.-C., Ge, L.-Q., Fei, Z.-H., Zhang, Y.-Q. & Yu, K.-B. (1998). Acta Cryst. C54, 1909-1911.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O

  • Mr = 226.28

  • Monoclinic, P 21 /c

  • a = 7.5261 (9) Å

  • b = 13.4298 (15) Å

  • c = 11.6412 (13) Å

  • β = 97.4001 (15)°

  • V = 1166.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (1) K

  • 0.42 × 0.33 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker, (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.982

  • 8700 measured reflections

  • 2276 independent reflections

  • 1848 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.04

  • 2276 reflections

  • 210 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.91 (2) 1.98 (2) 2.8316 (15) 154.7 (17)
C3—H3⋯O1ii 0.987 (15) 2.585 (15) 3.3541 (17) 134.7 (11)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker, (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker, (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and PLUTO (Meetsma, 2007[Meetsma, A. (2007). PLUTO. University of Groningen, The Netherlands.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Azobenzenes are widely used as dyes, but also as photochemical switch using photo-isomerization by UV light to induce a conformational change from trans to cis and back. This principle has been explored extensively in order to exploit the isomerization for several applications. (Shibaev et al., 2003) The presence of the phenolic moiety makes it possible to form complexes with e.g. poly (4-vinylpyridine) homopolymer or with poly (4-vinylpyridine) containing block copolymers. These supramolecular comb-like polymeric structures give rise to hierarchical structure-in-structure morphologies comparable with the systems with poly (4-vinylpyridine) containing block co-polymers complexed with nona- or pentadecylphenol. (Ruokolainen et al., 1998, 1999) The molecular geometry of (I) and the adopted atom-numbering scheme are shown in the perspective view in Figure 1. The crystal structure is similar to several other azo compounds, (Kocaokutgen et al. 2003; Soylu et al. 2004; Zhang et al., 1998) The –N1=N2- bond length is 1.2636 (16) Å, indicating a double-bond character. Regarding the azo double bond the rings are in a trans configuration. In contrast to many other azocompounds the benzene rings of EPAP are not coplanar.

Related literature top

For related literature, see: Bowes et al. (2003); Brown et al. (1971); Burger & Ramberger (1979); Enkelmann et al. (1978); Kageyama et al. (1982, 1985, 1986); Kashino et al. (1979); Kocaokutgen et al. (2003); McWilliam et al. (2001); Okamoto et al. (1983); Okamoto & Nakano (1994); Ruokolainen et al. (1996, 1998, 1999); Shibaev et al. (2003); Soylu et al. (2004); Zhang et al. (1998).

Experimental top

To a vigorously stirred solution of 1.21 g of ethylaniline (0.01 mol) in 3 ml of water and 3 ml of concentrated hydrochloric acid, a solution of 2.8 g sodiumnitrite in 20 ml water was added drop wise while maintaining the temperature during the reaction at 0 °C. The resulting pale yellow mixture was added drop wise to a phenolate ion solution which was prepared by dissolving 0.94 g phenol (0.01 mol) and 0.84 g potassium hydroxide (0.015 mol) in 20 ml of methanol. Dichloromethane was used to extract the product from the aquatic reaction mixture, followed by 5 times washing with water. The solvent was then removed by evaporation. Subsequently the crude product was purified over a silica gel column using a dichloromethane / n-hexane mixture (3:1 v/v). The final solution was evaporated to dryness and dried further overnight in vacuum at 40°C. The yield of the bright orange crystalline solid was 61%. Single crystals of (I) suitable for the x-ray analysis were grown by slow evaporation from a dichloromethane solution at room temperature in air.

Analysis Differential Scanning Calorimetry (DSC, Q1000 TA instruments; 10°C/min): melting point (onset) 120°C. H-NMR (Varian VXR 300 MHz, CDCl3): δ p.p.m. = 7.85 (d, 2H, H-3 and H-5), 7.79 p.p.m. (d, 2H, H-3' and H-5'), 7.31 p.p.m. (d, 2H, H-2' and H-6'), 6.92 p.p.m. (d, 2H, H-2 and H-6), 5.09 p.p.m. (s, 1H, –OH), 2.67 p.p.m. (t, 2H, HA), 1.57 p.p.m. (m, 2H, –CH2-)), 1.26 p.p.m. (t, 3H, CH3—CH2). Mass (Jeol JMS 600H EI+ 70 eV): m/z = 226 (calculated: 226.3)

Refinement top

All hydrogen atoms were located in a difference Fourier map and refined with isotropic displacement parameters.

C—H distances spanned the range of 0.943 (16)–1.011 (18) Å, and U(H) factors, 0.054 (6) to 0.019 (4) Å-2.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and PLUTO (Meetsma, 2007); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective ORTEP drawing of (I) with the atom-labeling scheme of the non-hydrogen atoms. All atoms are represented by their displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Crystal packing view of (I), showing the hydrogen bonds as dashed lines. Symmetry codes, as in Table 1.
4-(4-Ethylphenyldiazenyl)phenol top
Crystal data top
C14H14N2OF(000) = 480
Mr = 226.28Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3059 reflections
a = 7.5261 (9) Åθ = 3.0–27.5°
b = 13.4298 (15) ŵ = 0.08 mm1
c = 11.6412 (13) ÅT = 100 K
β = 97.4001 (15)°Block, orange
V = 1166.8 (2) Å30.42 × 0.33 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2276 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1848 reflections with I > 2σ(I)
Parallel mounted graphite monochromatorRint = 0.028
Detector resolution: 66.06 pixels mm-1θmax = 26.0°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1615
Tmin = 0.956, Tmax = 0.982l = 1414
8700 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.107All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2293P]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H14N2OV = 1166.8 (2) Å3
Mr = 226.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5261 (9) ŵ = 0.08 mm1
b = 13.4298 (15) ÅT = 100 K
c = 11.6412 (13) Å0.42 × 0.33 × 0.22 mm
β = 97.4001 (15)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1848 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.982Rint = 0.028
8700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.04Δρmax = 0.17 e Å3
2276 reflectionsΔρmin = 0.24 e Å3
210 parameters
Special details top

Experimental. The final unit cell was obtained from the xyz centroids of 3059 reflections after integration using the SAINTPLUS software package (Bruker, 2007).

Reduced cell calculations did not indicate any higher metric lattice symmetry and examination of the final atomic coordinates of the structure did not yield extra symmetry elements (Spek, 1988; Le Page 1987, 1988)

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.04406 (14)0.48064 (7)0.32923 (9)0.0263 (3)
N10.80788 (15)0.08833 (8)0.34477 (9)0.0188 (3)
N20.75956 (15)0.06025 (8)0.43960 (10)0.0199 (3)
C10.98453 (18)0.38503 (10)0.32795 (11)0.0193 (4)
C20.99777 (18)0.31861 (10)0.23708 (12)0.0201 (4)
C30.93839 (18)0.22132 (10)0.24543 (12)0.0190 (4)
C40.86411 (17)0.18959 (10)0.34290 (11)0.0175 (4)
C50.84621 (18)0.25739 (10)0.43237 (12)0.0190 (4)
C60.90547 (18)0.35397 (10)0.42467 (12)0.0204 (4)
C70.69280 (17)0.03918 (10)0.43646 (12)0.0190 (4)
C80.59745 (19)0.08196 (11)0.33765 (12)0.0223 (4)
C90.53750 (19)0.17915 (11)0.34156 (13)0.0232 (4)
C100.57357 (18)0.23637 (10)0.44256 (12)0.0214 (4)
C110.66447 (19)0.19152 (11)0.54092 (13)0.0228 (4)
C120.72082 (19)0.09323 (11)0.53944 (12)0.0216 (4)
C130.5212 (2)0.34494 (11)0.44295 (14)0.0260 (5)
C140.6554 (2)0.41051 (12)0.39094 (16)0.0298 (5)
H11.096 (3)0.4963 (14)0.2651 (19)0.054 (6)*
H21.0497 (19)0.3401 (11)0.1707 (13)0.025 (4)*
H30.9523 (19)0.1728 (11)0.1835 (13)0.022 (4)*
H50.7933 (19)0.2348 (10)0.4993 (13)0.019 (4)*
H60.894 (2)0.4036 (11)0.4876 (13)0.023 (4)*
H80.569 (2)0.0420 (12)0.2682 (14)0.026 (4)*
H90.472 (2)0.2076 (11)0.2751 (14)0.025 (4)*
H110.690 (2)0.2308 (11)0.6131 (13)0.023 (4)*
H120.781 (2)0.0609 (11)0.6080 (14)0.027 (4)*
H130.515 (2)0.3675 (13)0.5252 (16)0.043 (5)*
H13'0.401 (2)0.3550 (12)0.3973 (15)0.038 (5)*
H140.779 (3)0.4016 (13)0.4330 (16)0.047 (5)*
H14'0.662 (2)0.3941 (13)0.3112 (17)0.041 (5)*
H14"0.624 (2)0.4825 (13)0.3936 (15)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (6)0.0160 (5)0.0260 (6)0.0050 (4)0.0138 (5)0.0013 (4)
N10.0182 (6)0.0180 (6)0.0204 (6)0.0009 (4)0.0032 (5)0.0016 (5)
N20.0207 (6)0.0169 (6)0.0224 (6)0.0011 (4)0.0042 (5)0.0009 (5)
C10.0215 (7)0.0149 (7)0.0211 (7)0.0007 (5)0.0017 (5)0.0019 (5)
C20.0220 (7)0.0201 (7)0.0186 (7)0.0004 (5)0.0046 (5)0.0025 (6)
C30.0197 (7)0.0176 (7)0.0195 (7)0.0015 (5)0.0020 (5)0.0015 (6)
C40.0173 (7)0.0148 (7)0.0202 (7)0.0009 (5)0.0017 (5)0.0000 (5)
C50.0196 (7)0.0195 (7)0.0184 (7)0.0020 (5)0.0042 (5)0.0022 (5)
C60.0241 (7)0.0175 (7)0.0201 (7)0.0018 (5)0.0044 (6)0.0026 (5)
C70.0180 (7)0.0155 (7)0.0244 (7)0.0017 (5)0.0067 (5)0.0003 (5)
C80.0214 (7)0.0216 (8)0.0240 (7)0.0006 (6)0.0037 (6)0.0038 (6)
C90.0212 (7)0.0235 (8)0.0248 (8)0.0027 (6)0.0029 (6)0.0026 (6)
C100.0173 (7)0.0185 (7)0.0298 (8)0.0005 (5)0.0082 (6)0.0005 (6)
C110.0231 (7)0.0205 (8)0.0253 (8)0.0012 (6)0.0048 (6)0.0059 (6)
C120.0220 (8)0.0219 (8)0.0210 (7)0.0004 (6)0.0034 (6)0.0001 (6)
C130.0258 (8)0.0192 (8)0.0341 (9)0.0036 (6)0.0078 (7)0.0008 (6)
C140.0288 (9)0.0209 (8)0.0398 (10)0.0010 (6)0.0044 (7)0.0051 (7)
Geometric parameters (Å, º) top
O1—C11.3594 (17)C10—C131.511 (2)
O1—H10.91 (2)C11—C121.387 (2)
N1—N21.2636 (16)C13—C141.523 (2)
N1—C41.4252 (17)C2—H20.954 (15)
N2—C71.4255 (17)C3—H30.987 (15)
C1—C61.4030 (19)C5—H50.968 (15)
C1—C21.3971 (19)C6—H61.002 (15)
C2—C31.3884 (19)C8—H80.971 (16)
C3—C41.3946 (19)C9—H90.943 (16)
C4—C51.4029 (19)C11—H110.990 (15)
C5—C61.3783 (19)C12—H120.968 (16)
C7—C81.398 (2)C13—H131.011 (18)
C7—C121.394 (2)C13—H13'0.998 (16)
C8—C91.384 (2)C14—H141.00 (2)
C9—C101.402 (2)C14—H14'0.96 (2)
C10—C111.393 (2)C14—H14"0.997 (17)
O1···N1i2.8316 (15)C8···H2iii2.868 (15)
O1···C3i3.3541 (17)C9···H14'3.069 (17)
O1···H3i2.585 (15)C10···H5v2.926 (15)
O1···H6ii2.632 (15)C13···H5v2.942 (14)
N1···O1iii2.8316 (15)C14···H8x2.932 (16)
N1···H82.584 (16)H1···N1i1.98 (2)
N1···H1iii1.98 (2)H1···N2i2.88 (2)
N2···H52.449 (14)H1···C3i3.034 (19)
N2···H1iii2.88 (2)H1···C4i2.92 (2)
C2···C8i3.536 (2)H1···C7i3.04 (2)
C3···O1iii3.3541 (17)H1···C8i2.93 (2)
C4···C12iv3.494 (2)H2···C7i2.926 (15)
C5···C13v3.488 (2)H2···C8i2.868 (15)
C7···C7v3.5810 (19)H3···O1iii2.585 (15)
C8···C2iii3.536 (2)H3···C5vi3.076 (15)
C12···C4iv3.494 (2)H3···C6vi3.010 (15)
C13···C5v3.488 (2)H5···N22.449 (14)
C2···H5vi3.074 (15)H5···C10v2.926 (15)
C2···H11iv2.983 (15)H5···C13v2.942 (14)
C3···H13'vii3.040 (16)H5···C2viii3.074 (15)
C3···H11iv3.060 (15)H5···C3viii2.991 (15)
C3···H5vi2.991 (15)H6···O1ii2.632 (15)
C3···H1iii3.034 (19)H8···N12.584 (16)
C4···H1iii2.92 (2)H8···C14vii2.932 (16)
C4···H9vii3.049 (15)H9···C4x3.049 (15)
C5···H3viii3.076 (15)H11···C2iv2.983 (15)
C6···H14iv2.79 (2)H11···C3iv3.060 (15)
C6···H3viii3.010 (15)H13'···C3x3.040 (16)
C6···H14"ix3.040 (17)H14···C6iv2.79 (2)
C7···H2iii2.926 (15)H14'···C93.069 (17)
C7···H1iii3.04 (2)H14"···C6xi3.040 (17)
C8···H1iii2.93 (2)
C1—O1—H1112.6 (12)C2—C3—H3120.3 (9)
N2—N1—C4114.68 (10)C4—C3—H3118.9 (9)
N1—N2—C7113.41 (11)C4—C5—H5118.9 (8)
O1—C1—C6116.44 (12)C6—C5—H5121.2 (8)
C2—C1—C6119.79 (12)C1—C6—H6118.3 (9)
O1—C1—C2123.77 (12)C5—C6—H6121.3 (9)
C1—C2—C3119.53 (13)C7—C8—H8119.5 (10)
C2—C3—C4120.72 (13)C9—C8—H8120.7 (9)
N1—C4—C3117.06 (11)C8—C9—H9119.6 (9)
C3—C4—C5119.51 (12)C10—C9—H9119.4 (9)
N1—C4—C5123.43 (12)C10—C11—H11119.2 (9)
C4—C5—C6119.98 (13)C12—C11—H11119.4 (9)
C1—C6—C5120.41 (13)C7—C12—H12118.6 (9)
N2—C7—C8123.21 (12)C11—C12—H12121.9 (9)
C8—C7—C12119.88 (13)C10—C13—H13109.6 (10)
N2—C7—C12116.87 (12)C10—C13—H13'110.4 (9)
C7—C8—C9119.70 (13)C14—C13—H13108.5 (9)
C8—C9—C10121.07 (13)C14—C13—H13'108.2 (10)
C9—C10—C13120.62 (13)H13—C13—H13'108.3 (13)
C11—C10—C13121.04 (13)C13—C14—H14111.0 (11)
C9—C10—C11118.30 (13)C13—C14—H14'111.8 (10)
C10—C11—C12121.32 (13)C13—C14—H14"112.1 (9)
C7—C12—C11119.57 (13)H14—C14—H14'106.5 (14)
C10—C13—C14111.73 (12)H14—C14—H14"108.1 (14)
C1—C2—H2119.8 (9)H14'—C14—H14"107.1 (14)
C3—C2—H2120.7 (9)
C4—N1—N2—C7176.04 (11)C4—C5—C6—C10.3 (2)
N2—N1—C4—C3172.74 (12)N2—C7—C8—C9179.83 (13)
N2—N1—C4—C58.05 (18)C12—C7—C8—C92.5 (2)
N1—N2—C7—C833.70 (18)N2—C7—C12—C11177.78 (13)
N1—N2—C7—C12148.57 (12)C8—C7—C12—C114.4 (2)
O1—C1—C2—C3177.87 (13)C7—C8—C9—C101.2 (2)
C6—C1—C2—C32.4 (2)C8—C9—C10—C112.9 (2)
O1—C1—C6—C5178.04 (12)C8—C9—C10—C13174.80 (13)
C2—C1—C6—C52.2 (2)C9—C10—C11—C121.0 (2)
C1—C2—C3—C40.7 (2)C13—C10—C11—C12176.74 (13)
C2—C3—C4—N1179.53 (12)C9—C10—C13—C1480.03 (17)
C2—C3—C4—C51.2 (2)C11—C10—C13—C1497.60 (17)
N1—C4—C5—C6179.38 (12)C10—C11—C12—C72.7 (2)
C3—C4—C5—C61.4 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+2, y1/2, z+1/2; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x, y+1/2, z1/2; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x, y+1, z; (x) x+1, y1/2, z+1/2; (xi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.91 (2)1.98 (2)2.8316 (15)154.7 (17)
C3—H3···O1iii0.987 (15)2.585 (15)3.3541 (17)134.7 (11)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14N2O
Mr226.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5261 (9), 13.4298 (15), 11.6412 (13)
β (°) 97.4001 (15)
V3)1166.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.33 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.956, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8700, 2276, 1848
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections2276
No. of parameters210
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.24

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and PLUTO (Meetsma, 2007), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.91 (2)1.98 (2)2.8316 (15)154.7 (17)
C3—H3···O1ii0.987 (15)2.585 (15)3.3541 (17)134.7 (11)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

Albert Kiewiet is acknowledged for performing the MS analysis.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, A., Gillbro, T. & Nilsson, B. (1971). J. Polym. Sci. Part. A2, 9, 1509–1515.  Google Scholar
First citationBruker, (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259–271.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnkelmann, V., Kapp, H. & Meyer, W. (1978). Acta Cryst. B34, 2350–2351.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKageyama, H., Hayashi, Y., Harada, S., Kai, Y. & Kasai, Y. (1985). Makromol. Chem. 186, 203–214.  CrossRef CAS Google Scholar
First citationKageyama, H., Miki, K., Kasai, N., Mohri, H., Okamoto, Y. & Hatada, K. (1986). Bull. Chem. Soc. Jpn, 59, 2707–2710.  CrossRef CAS Web of Science Google Scholar
First citationKageyama, H., Miki, K., Tanaka, N. & Kasai, N. (1982). Makromol. Chem. 183, 2863–2870.  CSD CrossRef CAS Google Scholar
First citationKashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365–369.  CrossRef CAS Web of Science Google Scholar
First citationKocaokutgen, H., Gür, M., Soylu, M. S. & Lönnecke, P. (2003). Acta Cryst. E59, o1613–o1615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeetsma, A. (2007). PLUTO. University of Groningen, The Netherlands.  Google Scholar
First citationOkamoto, Y., Ishikura, M., Hatada, K. & Yuki, H. (1983). Polym. J. 15, 851–853.  CrossRef CAS Web of Science Google Scholar
First citationOkamoto, Y. & Nakano, T. (1994). Chem. Rev. 94, 349–372.  CrossRef CAS Web of Science Google Scholar
First citationRuokolainen, J., Mäkinen, R., Torkkeli, M., Mäkelä, T., Serimaa, R., ten Brinke, G. & Ikkala, O. (1998). Science, 280, 557–560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRuokolainen, J., ten Brinke, G. & Ikkala, O. (1999). Adv. Mater., 11, 777–780.  CrossRef CAS Google Scholar
First citationRuokolainen, J., Torkkeli, M., Serimaa, R., Komanschek, B. E., Ikkala, O. & ten Brinke, G. (1996). Phys. Rev. E, 54, 6646–6649.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibaev, V., Bobrovsky, A. & Boiko, N. (2003). Prog. Polym. Sci. 28, 729–836.  Web of Science CrossRef CAS Google Scholar
First citationSoylu, S., Kocaokutgen, H., Gür, M. & Lönnecke, P. (2004). Acta Cryst. C60, o498–o500.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D.-C., Ge, L.-Q., Fei, Z.-H., Zhang, Y.-Q. & Yu, K.-B. (1998). Acta Cryst. C54, 1909–1911.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds