organic compounds
(2E)-2-(2,4-Dichlorophenylsulfonyl)-3-(3-methoxyanilino)-3-(methylsulfanyl)acrylonitrile
aEscuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1051, Venezuela, and bFacultad de Farmacia, Universidad Central de Venezuela, Caracas 1051, Venezuela
*Correspondence e-mail: mariocapparelli@cantv.net
The title compound, C17H14Cl2N2O3S2, and the 4-methylanilino analogue reported in the following paper have been used as starting materials to develop benzothiazine derivatives with antimalarial activity. The molecule displays an E (trans) configuration about the central double bond. Due to conjugation in the C=C—C≡N group, the putative single bond shows a significant shortening [1.421 (3) Å]. The molecule has a six-membered ring involving an intramolecular N—H⋯O(sulfonyl) bond, which is an example of resonance-assisted hydrogen bonding. There is also an intramolecular N—H⋯Cl hydrogen bond. In the bonds of the C—H⋯O(sulfonyl) type form chains that run along [101], while N—H⋯O(sulfonyl) bonds connect centrosymmetrically related molecules in pairs of these chains, forming ribbons. Comparison of the N⋯O distances in the intra- and intermolecular N—H⋯O(sulfonyl) bonds reveals that the π-bond co-operativity results in a strengthening of the intramolecular hydrogen bond. There are also π–π interactions between benzene rings of pairs of centrosymmetrically related molecules [centroid–centroid distance = 3.8612 (13) Å], as well as C—H⋯π interactions.
Related literature
For related literature, see: Allen (2002); Allen et al. (1987); Barazarte et al. (2008); Capparelli et al. (2008); Charris et al. (2005, 2007); Gilli et al. (1989); Kennard et al. (2003); Krivokolysko et al. (2002); Song et al. (2005); Tominaga et al. (1989, 2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
Supporting information
10.1107/S160053680801252X/bg2184sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801252X/bg2184Isup2.hkl
To a solution of 2,4-dichlorobenzenosulfonylacetonitrile (1.50 g, 6.1 mmol) and KOH (0.46 g, 8.1 mmol) in anhydrous dioxane (10 ml) at 0 °C, was added dropwise 3-methoxyphenylisothiocianate (1.00 g, 6.1 mmol) dissolved in anhydrous dioxane (3 ml). The resulting solution was stirred for 4 h at room temperature and then was added iodomethane (0.87 g, 6.1 mmol) and the mixture was stirred by 5 h at room temperature. The solvent was removed under reduced pressure and the residue was dissolved in dichloromethane (20 ml), washed with water, brine, dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The solid was purified by recrystallization from ethanol. Yield: 1.91 g (74%). Crystals suitable for X-ray analysis were obtained during the recrystallization.
The IR spectrum was determined on a Shimadzu model 470 spectrophotometer. IR data [KBr pellets, ν (cm-1)]: 3264 (NH), 2192 (CN), 1341 (SO2), 1133 (SO2).
The 1H NMR spectrum was recorded using a Jeol Eclipse 270 MHz [CDCl3/TMS, δ (p.p.m.), atomic numbering as in Fig. 1]: 2.21 (s, 3H, SCH3), 3.81 (s,3H, OCH3), 6.79 (d, 1H, H22; J: 2,2 Hz), 6.85 (dd, 2H, H24, H26; J: 8.1, 2.2 Hz), 7.30 (t, 1H, H25; 8.1 Hz), 7.43 (dd, 1H, H15; J: 8.4, 1.9 Hz), 7.55 (d, 1H, H13; J: 1.9 Hz), 8.13 (d, 1H, H16; J:8.4 Hz), 9.97 (brs, 1H, NH).
The elemental analysis was performed on a Perkin Elmer 2400 CHN analyzer; results (%) were within ±0.4 of predicted values. Calculated for C17H14N2O3S2Cl2: C, 47.55 H, 3.29 N, 6.52. Found: C, 47.55; H, 3.29; N, 6.52.
The melting point (uncorrected) was measured with a Fischer-Johns micro hot-stage apparatus: 136–138 °C.
Hydrogen atoms were placed in calculated positions using a riding atom model with fixed C—H distances [0.86 Å for N, 0.93 Å for C(sp2), 0.96 Å for C(sp3)] and Uiso = p Ueq(parent atom) [p = 1.2 for N and C(sp2), 1.5 for C(sp3)].
The exploration of simple molecules with different functionalities for the synthesis of heterocycles is a worthwhile contribution to the chemistry of these compounds. The title compound (I), the 4''-methyl analogue (II) [see next paper: Capparelli et al., 2008)], and similar derivatives, have been used as effective synthons in the syntheses of some 1H-pyrrole-2,5-diones (Tominaga et al., 2002), pyrimidine derivatives (Tominaga et al., 1989) and 4H-1,4-benzothiazine-1,1-dioxides (Charris et al., 2005). We used (I) and (II) as starting materials to develop benzothiazine derivatives with antimalarial activity (Charris et al., 2007; Barazarte et al., 2008).
The X-ray ═C3 double bond. A search of the Cambridge Structural Database (version 5.29, updated Jan 2008) (Allen, 2002) produced no structures with the same central fragment (i.e. excluding the phenyl rings) of (I) for proper comparison, but a search for the more restricted fragment X—C(CN)═C(SMe)-N(H)—Y gave three comparable structures, viz. TAKDOZ (Krivokolysko et al., 2002), AJULUM (Kennard et al., 2003) and DALVES (Song et al., 2005). Due to conjugation in the C3═C2—C1≡N1 moiety, the putative single bond C2—C1 shows a significant shortening, similar to the range 1.415 (7)–1.437 (4) Å observed in the aforementioned structures. Bond lengths (see Supplementary Materials) are in good agreement with the tabulated values (Allen et al., 1987), except C24—C25 (1.359 (4) Å), which is ca 0.02 Å shorter than expected.
showed that there is one molecule per (Fig. 1), which displays E (trans) configuration about the C2The title compound displays a six-membered ring involving an intramolecular N—H···O(sulfonyl) bond (Table 1), which is an example of resonance-assisted hydrogen bonding (RAHB) (Gilli et al., 1989), as suggested by the ring bond lengths. Comparison with AJULUM and DALVES, which display similar rings [with N—H···O(carbonyl) and N—H···O(carboxyl) bonds respectively] and TAKDOZ, which does not have RAHB, reveal lengthenings of the C═C distances [AJULUM, 1.371 (2) Å; DALVES, 1.386 (7) Å; TAKDOZ, 1.345 (4) Å] and shortenings of the C—N bonds [AJULUM, 1.360 (2) Å; DALVES, 1.333 (6) Å; TAKDOZ, 1.404 (4) Å]. The situation is less clear in the S═O bond, with S1═O2 (involved in RAHB) just significantly longer than S1═O1. In addition to the RAHB ring, there is an N—H···Cl intramolecular bond. The molecular geometry also allows for a possible C4—H4b···Cg2 intramolecular interaction (Cg2: see below).
In the π-bond cooperativity results in a strengthening of the intramolecular hydrogen bond, as indicated by the significant shortening of the corresponding N···O distance. There are also π-π interactions between phenyl rings of pairs of centrosymmetrically related molecules, with Cg1···Cg2(2 - x, 1 - y, -z), 3.8612 (13) Å (Cgm: centroid of ring Cm1—Cm6, m = 1, 2).
(Fig. 2) bonds of the C—H···O(sulfonyl) type form chains that run along [1 0 1], while N—H···O(sulfonyl) bonds connect centrosymmetrycally related atoms of pairs of these chains, to form ribbons. Comparison of the N···O distances of the intra- and intermolecular N—H···O(sulfonyl) bonds reveals that theFor related literature, see: Allen (2002); Allen et al. (1987); Barazarte et al. (2008); Capparelli et al. (2008); Charris et al. (2005, 2007); Gilli et al. (1989); Kennard et al. (2003); Krivokolysko et al. (2002); Song et al. (2005); Tominaga et al. (1989, 2002). Cg2 is the centroid of ring C21–C26.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).C17H14Cl2N2O3S2 | F(000) = 880 |
Mr = 429.32 | Dx = 1.503 Mg m−3 |
Monoclinic, P21/n | Melting point = 409–411 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 11.6125 (7) Å | Cell parameters from 3492 reflections |
b = 10.1419 (6) Å | θ = 2.4–28.1° |
c = 16.4048 (10) Å | µ = 0.58 mm−1 |
β = 100.926 (1)° | T = 296 K |
V = 1897.0 (2) Å3 | Prism, colourless |
Z = 4 | 0.29 × 0.22 × 0.17 mm |
Bruker SMART APEX diffractometer | 4659 independent reflections |
Radiation source: fine-focus sealed tube | 3653 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.13 pixels mm-1 | θmax = 29.1°, θmin = 2.0° |
φ and ω scans | h = −13→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −13→13 |
Tmin = 0.796, Tmax = 0.906 | l = −22→15 |
12828 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.5461P] where P = (Fo2 + 2Fc2)/3 |
4659 reflections | (Δ/σ)max = 0.001 |
237 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C17H14Cl2N2O3S2 | V = 1897.0 (2) Å3 |
Mr = 429.32 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.6125 (7) Å | µ = 0.58 mm−1 |
b = 10.1419 (6) Å | T = 296 K |
c = 16.4048 (10) Å | 0.29 × 0.22 × 0.17 mm |
β = 100.926 (1)° |
Bruker SMART APEX diffractometer | 4659 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3653 reflections with I > 2σ(I) |
Tmin = 0.796, Tmax = 0.906 | Rint = 0.024 |
12828 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.58 e Å−3 |
4659 reflections | Δρmin = −0.27 e Å−3 |
237 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.77042 (4) | 0.46268 (5) | 0.02088 (3) | 0.03340 (13) | |
S2 | 0.90726 (5) | 0.19039 (6) | 0.21790 (4) | 0.05277 (17) | |
Cl1 | 0.95425 (5) | 0.66027 (6) | 0.13868 (5) | 0.0661 (2) | |
Cl2 | 0.62331 (7) | 1.02603 (7) | 0.11885 (6) | 0.0852 (3) | |
O1 | 0.66548 (12) | 0.40951 (15) | −0.02832 (9) | 0.0479 (4) | |
O2 | 0.87384 (12) | 0.46887 (14) | −0.01526 (9) | 0.0422 (3) | |
O3 | 1.2713 (2) | −0.0272 (2) | 0.10486 (15) | 0.0869 (7) | |
N1 | 0.62151 (18) | 0.3565 (3) | 0.17764 (15) | 0.0692 (6) | |
N2 | 1.01127 (14) | 0.34675 (17) | 0.11897 (11) | 0.0432 (4) | |
H2 | 1.0073 | 0.4157 | 0.0880 | 0.052* | |
C11 | 0.73323 (15) | 0.62359 (19) | 0.04938 (11) | 0.0337 (4) | |
C12 | 0.81194 (16) | 0.7078 (2) | 0.09891 (13) | 0.0395 (4) | |
C13 | 0.77859 (19) | 0.8317 (2) | 0.11955 (14) | 0.0462 (5) | |
H13 | 0.8314 | 0.8872 | 0.1529 | 0.055* | |
C14 | 0.6645 (2) | 0.8717 (2) | 0.08946 (15) | 0.0500 (5) | |
C15 | 0.58494 (19) | 0.7912 (2) | 0.04044 (15) | 0.0524 (6) | |
H15 | 0.5086 | 0.8200 | 0.0214 | 0.063* | |
C16 | 0.61911 (17) | 0.6676 (2) | 0.01975 (13) | 0.0425 (5) | |
H16 | 0.5659 | 0.6132 | −0.0141 | 0.051* | |
C21 | 1.12266 (16) | 0.2827 (2) | 0.13590 (12) | 0.0381 (4) | |
C22 | 1.13568 (19) | 0.1547 (2) | 0.11007 (13) | 0.0462 (5) | |
H22 | 1.0715 | 0.1074 | 0.0822 | 0.055* | |
C23 | 1.2473 (2) | 0.0979 (2) | 0.12682 (15) | 0.0534 (6) | |
C24 | 1.3416 (2) | 0.1696 (3) | 0.16728 (16) | 0.0594 (7) | |
H24 | 1.4156 | 0.1311 | 0.1787 | 0.071* | |
C25 | 1.3275 (2) | 0.2962 (3) | 0.19075 (16) | 0.0573 (6) | |
H25 | 1.3921 | 0.3441 | 0.2174 | 0.069* | |
C26 | 1.21789 (19) | 0.3539 (2) | 0.17530 (14) | 0.0479 (5) | |
H26 | 1.2085 | 0.4406 | 0.1914 | 0.058* | |
C1 | 0.70534 (17) | 0.3590 (2) | 0.15151 (13) | 0.0433 (5) | |
C2 | 0.80432 (16) | 0.37253 (19) | 0.11286 (12) | 0.0352 (4) | |
C3 | 0.91295 (16) | 0.31489 (19) | 0.14429 (12) | 0.0351 (4) | |
C4 | 1.0420 (2) | 0.1996 (3) | 0.29231 (15) | 0.0709 (8) | |
H4B | 1.1041 | 0.1607 | 0.2692 | 0.106* | |
H4C | 1.0336 | 0.1527 | 0.3417 | 0.106* | |
H4A | 1.0604 | 0.2902 | 0.3058 | 0.106* | |
C5 | 1.1784 (4) | −0.1029 (4) | 0.0621 (3) | 0.1160 (15) | |
H5B | 1.1195 | −0.1123 | 0.0956 | 0.174* | |
H5C | 1.2069 | −0.1884 | 0.0506 | 0.174* | |
H5A | 1.1452 | −0.0599 | 0.0109 | 0.174* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0278 (2) | 0.0382 (3) | 0.0323 (2) | 0.00214 (17) | 0.00072 (17) | −0.00024 (18) |
S2 | 0.0432 (3) | 0.0603 (4) | 0.0538 (3) | 0.0042 (2) | 0.0066 (2) | 0.0228 (3) |
Cl1 | 0.0329 (3) | 0.0604 (4) | 0.0935 (5) | 0.0095 (2) | −0.0169 (3) | −0.0257 (3) |
Cl2 | 0.0768 (5) | 0.0594 (4) | 0.1172 (7) | 0.0303 (3) | 0.0126 (4) | −0.0190 (4) |
O1 | 0.0398 (8) | 0.0511 (9) | 0.0462 (8) | −0.0016 (7) | −0.0088 (6) | −0.0057 (7) |
O2 | 0.0385 (7) | 0.0509 (8) | 0.0386 (8) | 0.0085 (6) | 0.0112 (6) | 0.0056 (6) |
O3 | 0.0812 (14) | 0.0708 (13) | 0.1052 (17) | 0.0331 (11) | 0.0093 (12) | −0.0160 (12) |
N1 | 0.0398 (11) | 0.1008 (18) | 0.0705 (15) | 0.0078 (11) | 0.0196 (10) | 0.0213 (13) |
N2 | 0.0305 (8) | 0.0460 (9) | 0.0531 (10) | 0.0094 (7) | 0.0075 (7) | 0.0172 (8) |
C11 | 0.0270 (8) | 0.0384 (10) | 0.0349 (10) | 0.0035 (7) | 0.0041 (7) | 0.0024 (7) |
C12 | 0.0291 (9) | 0.0442 (11) | 0.0435 (11) | 0.0048 (8) | 0.0024 (8) | −0.0011 (8) |
C13 | 0.0438 (11) | 0.0434 (12) | 0.0505 (13) | 0.0021 (9) | 0.0063 (9) | −0.0060 (9) |
C14 | 0.0502 (13) | 0.0426 (12) | 0.0590 (14) | 0.0156 (10) | 0.0149 (11) | 0.0019 (10) |
C15 | 0.0348 (11) | 0.0563 (14) | 0.0642 (15) | 0.0155 (10) | 0.0045 (10) | 0.0072 (11) |
C16 | 0.0294 (10) | 0.0494 (12) | 0.0459 (12) | 0.0042 (8) | 0.0002 (8) | 0.0047 (9) |
C21 | 0.0315 (9) | 0.0460 (11) | 0.0371 (10) | 0.0083 (8) | 0.0070 (8) | 0.0083 (8) |
C22 | 0.0419 (11) | 0.0503 (12) | 0.0445 (12) | 0.0029 (9) | 0.0036 (9) | 0.0009 (9) |
C23 | 0.0580 (14) | 0.0526 (13) | 0.0506 (13) | 0.0206 (11) | 0.0126 (11) | 0.0014 (10) |
C24 | 0.0366 (12) | 0.0815 (19) | 0.0593 (15) | 0.0201 (11) | 0.0074 (10) | 0.0067 (13) |
C25 | 0.0351 (11) | 0.0728 (16) | 0.0597 (15) | 0.0007 (11) | −0.0020 (10) | 0.0049 (12) |
C26 | 0.0393 (11) | 0.0524 (13) | 0.0502 (13) | 0.0033 (9) | 0.0038 (9) | 0.0023 (10) |
C1 | 0.0321 (10) | 0.0517 (12) | 0.0447 (12) | 0.0028 (9) | 0.0040 (8) | 0.0096 (9) |
C2 | 0.0285 (9) | 0.0408 (10) | 0.0358 (10) | 0.0011 (7) | 0.0045 (7) | 0.0041 (8) |
C3 | 0.0309 (9) | 0.0383 (10) | 0.0347 (10) | 0.0012 (7) | 0.0031 (7) | 0.0023 (8) |
C4 | 0.0549 (15) | 0.113 (2) | 0.0428 (13) | 0.0180 (15) | 0.0042 (11) | 0.0260 (14) |
C5 | 0.118 (3) | 0.073 (2) | 0.150 (4) | 0.002 (2) | 0.009 (3) | −0.040 (2) |
S1—O1 | 1.4333 (14) | C15—H15 | 0.9300 |
S1—O2 | 1.4380 (14) | C16—H16 | 0.9300 |
S1—C2 | 1.7443 (19) | C21—C26 | 1.375 (3) |
S1—C11 | 1.7733 (19) | C21—C22 | 1.383 (3) |
S2—C3 | 1.757 (2) | C22—C23 | 1.397 (3) |
S2—C4 | 1.795 (3) | C22—H22 | 0.9300 |
Cl1—C12 | 1.7264 (19) | C23—C24 | 1.375 (4) |
Cl2—C14 | 1.732 (2) | C24—C25 | 1.359 (4) |
O3—C23 | 1.362 (3) | C24—H24 | 0.9300 |
O3—C5 | 1.399 (4) | C25—C26 | 1.380 (3) |
N1—C1 | 1.136 (3) | C25—H25 | 0.9300 |
N2—C3 | 1.327 (2) | C26—H26 | 0.9300 |
N2—C21 | 1.427 (2) | C1—C2 | 1.421 (3) |
N2—H2 | 0.8600 | C2—C3 | 1.397 (3) |
C11—C12 | 1.394 (3) | C4—H4B | 0.9600 |
C11—C16 | 1.396 (2) | C4—H4C | 0.9600 |
C12—C13 | 1.376 (3) | C4—H4A | 0.9600 |
C13—C14 | 1.384 (3) | C5—H5B | 0.9600 |
C13—H13 | 0.9300 | C5—H5C | 0.9600 |
C14—C15 | 1.373 (3) | C5—H5A | 0.9600 |
C15—C16 | 1.377 (3) | ||
O1—S1—O2 | 118.14 (9) | C21—C22—H22 | 120.7 |
O1—S1—C2 | 108.56 (9) | C23—C22—H22 | 120.7 |
O2—S1—C2 | 108.08 (9) | O3—C23—C24 | 115.9 (2) |
O1—S1—C11 | 105.74 (9) | O3—C23—C22 | 124.1 (2) |
O2—S1—C11 | 109.43 (9) | C24—C23—C22 | 120.1 (2) |
C2—S1—C11 | 106.30 (9) | C25—C24—C23 | 120.6 (2) |
C3—S2—C4 | 106.78 (12) | C25—C24—H24 | 119.7 |
C23—O3—C5 | 117.8 (2) | C23—C24—H24 | 119.7 |
C3—N2—C21 | 129.07 (17) | C24—C25—C26 | 120.3 (2) |
C3—N2—H2 | 115.5 | C24—C25—H25 | 119.8 |
C21—N2—H2 | 115.5 | C26—C25—H25 | 119.8 |
C12—C11—C16 | 118.77 (18) | C21—C26—C25 | 119.7 (2) |
C12—C11—S1 | 123.49 (14) | C21—C26—H26 | 120.2 |
C16—C11—S1 | 117.73 (15) | C25—C26—H26 | 120.2 |
C13—C12—C11 | 121.26 (18) | N1—C1—C2 | 173.9 (2) |
C13—C12—Cl1 | 117.11 (16) | C3—C2—C1 | 123.04 (18) |
C11—C12—Cl1 | 121.62 (15) | C3—C2—S1 | 125.34 (15) |
C12—C13—C14 | 118.3 (2) | C1—C2—S1 | 111.57 (14) |
C12—C13—H13 | 120.8 | N2—C3—C2 | 123.57 (17) |
C14—C13—H13 | 120.8 | N2—C3—S2 | 122.47 (14) |
C15—C14—C13 | 121.8 (2) | C2—C3—S2 | 113.91 (14) |
C15—C14—Cl2 | 120.62 (17) | S2—C4—H4B | 109.5 |
C13—C14—Cl2 | 117.50 (18) | S2—C4—H4C | 109.5 |
C14—C15—C16 | 119.48 (19) | H4B—C4—H4C | 109.5 |
C14—C15—H15 | 120.3 | S2—C4—H4A | 109.5 |
C16—C15—H15 | 120.3 | H4B—C4—H4A | 109.5 |
C15—C16—C11 | 120.3 (2) | H4C—C4—H4A | 109.5 |
C15—C16—H16 | 119.8 | O3—C5—H5B | 109.5 |
C11—C16—H16 | 119.8 | O3—C5—H5C | 109.5 |
C26—C21—C22 | 120.81 (19) | H5B—C5—H5C | 109.5 |
C26—C21—N2 | 118.09 (19) | O3—C5—H5A | 109.5 |
C22—C21—N2 | 121.03 (18) | H5B—C5—H5A | 109.5 |
C21—C22—C23 | 118.5 (2) | H5C—C5—H5A | 109.5 |
O1—S1—C11—C12 | 179.07 (17) | C5—O3—C23—C22 | 0.7 (4) |
O2—S1—C11—C12 | −52.70 (19) | C21—C22—C23—O3 | 179.8 (2) |
C2—S1—C11—C12 | 63.80 (19) | C21—C22—C23—C24 | −0.8 (3) |
O1—S1—C11—C16 | −1.47 (18) | O3—C23—C24—C25 | 179.0 (2) |
O2—S1—C11—C16 | 126.77 (16) | C22—C23—C24—C25 | −0.5 (4) |
C2—S1—C11—C16 | −116.74 (16) | C23—C24—C25—C26 | 0.9 (4) |
C16—C11—C12—C13 | 0.8 (3) | C22—C21—C26—C25 | −1.3 (3) |
S1—C11—C12—C13 | −179.76 (17) | N2—C21—C26—C25 | −178.4 (2) |
C16—C11—C12—Cl1 | 179.47 (16) | C24—C25—C26—C21 | 0.0 (4) |
S1—C11—C12—Cl1 | −1.1 (3) | O1—S1—C2—C3 | 128.18 (18) |
C11—C12—C13—C14 | −0.4 (3) | O2—S1—C2—C3 | −1.1 (2) |
Cl1—C12—C13—C14 | −179.12 (18) | C11—S1—C2—C3 | −118.48 (18) |
C12—C13—C14—C15 | 0.3 (4) | O1—S1—C2—C1 | −49.26 (17) |
C12—C13—C14—Cl2 | 178.07 (18) | O2—S1—C2—C1 | −178.53 (15) |
C13—C14—C15—C16 | −0.6 (4) | C11—S1—C2—C1 | 64.08 (17) |
Cl2—C14—C15—C16 | −178.30 (18) | C21—N2—C3—C2 | −169.2 (2) |
C14—C15—C16—C11 | 1.0 (3) | C21—N2—C3—S2 | 8.0 (3) |
C12—C11—C16—C15 | −1.1 (3) | C1—C2—C3—N2 | −166.4 (2) |
S1—C11—C16—C15 | 179.43 (17) | S1—C2—C3—N2 | 16.5 (3) |
C3—N2—C21—C26 | −120.4 (2) | C1—C2—C3—S2 | 16.2 (3) |
C3—N2—C21—C22 | 62.5 (3) | S1—C2—C3—S2 | −160.99 (12) |
C26—C21—C22—C23 | 1.7 (3) | C4—S2—C3—N2 | 37.0 (2) |
N2—C21—C22—C23 | 178.65 (19) | C4—S2—C3—C2 | −145.56 (17) |
C5—O3—C23—C24 | −178.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 2.14 | 2.756 (2) | 129 |
N2—H2···O2i | 0.86 | 2.31 | 3.005 (2) | 138 |
N2—H2···Cl1 | 0.86 | 2.72 | 3.2763 (18) | 123 |
C4—H4C···O1ii | 0.96 | 2.46 | 3.215 (3) | 135 |
C16—H16···O1 | 0.93 | 2.40 | 2.815 (3) | 107 |
C4—H4B···Cg2 | 0.96 | 2.74 | 3.501 (3) | 137 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H14Cl2N2O3S2 |
Mr | 429.32 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 11.6125 (7), 10.1419 (6), 16.4048 (10) |
β (°) | 100.926 (1) |
V (Å3) | 1897.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.58 |
Crystal size (mm) | 0.29 × 0.22 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEX |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.796, 0.906 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12828, 4659, 3653 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.683 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.119, 1.04 |
No. of reflections | 4659 |
No. of parameters | 237 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.27 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 2.14 | 2.756 (2) | 128.5 |
N2—H2···O2i | 0.86 | 2.31 | 3.005 (2) | 138.4 |
N2—H2···Cl1 | 0.86 | 2.72 | 3.2763 (18) | 123.4 |
C4—H4C···O1ii | 0.96 | 2.46 | 3.215 (3) | 135.4 |
C4—H4B···Cg2 | 0.96 | 2.74 | 3.501 (3) | 136.8 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
Financial support from the Consejo de Desarrollo Científico y Humanístico of Universidad Central de Venezuela (CDCH-UCV), project PG 06–00–6502–2006, is gratefully acknowledged. We thank Dr Ángel Álvarez-Larena (Universidad Autónoma de Barcelona, Spain) for the X-ray diffraction data collection.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Barazarte, A., Camacho, J., Domínguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661–3670. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Capparelli, M. V., Barazarte, A. R. & Charris, J. E. (2008). Acta Cryst. E64, o983–o984. Web of Science CSD CrossRef IUCr Journals Google Scholar
Charris, J., Barazarte, A., Domínguez, J. & Gamboa, N. (2005). J. Chem. Res. pp. 27–28. CrossRef Google Scholar
Charris, J., Barazarte, A., Ferrer, R., Camacho, J., Gamboa, N., Rodrigues, J., Atencio, R. & González, T. (2007). J. Chem. Res. pp. 16–18. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028. CrossRef CAS Web of Science Google Scholar
Kennard, C. H. L., McFadden, H. G. & Byriel, K. A. (2003). Acta Cryst. E59, o922–o923. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krivokolysko, S. G., Rusanov, E. B. & Litvinov, V. P. (2002). Chem. Heterocycl. Compd, 38, 1205–1209. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, B., Yang, S., Zhong, H., Jin, L., Hu, D. & Liu, G. (2005). J. Fluorine Chem. 126, 87–92. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tominaga, Y., Kohra, S., Honkawa, H. & Hosomi, A. (1989). Heterocycles, 29, 1409–1428. CrossRef CAS Google Scholar
Tominaga, Y., Shigemitsu, Y. & Sasaki, K. (2002). J. Heterocycl. Chem. 39, 571–591. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The exploration of simple molecules with different functionalities for the synthesis of heterocycles is a worthwhile contribution to the chemistry of these compounds. The title compound (I), the 4''-methyl analogue (II) [see next paper: Capparelli et al., 2008)], and similar derivatives, have been used as effective synthons in the syntheses of some 1H-pyrrole-2,5-diones (Tominaga et al., 2002), pyrimidine derivatives (Tominaga et al., 1989) and 4H-1,4-benzothiazine-1,1-dioxides (Charris et al., 2005). We used (I) and (II) as starting materials to develop benzothiazine derivatives with antimalarial activity (Charris et al., 2007; Barazarte et al., 2008).
The X-ray structure determination showed that there is one molecule per asymmetric unit (Fig. 1), which displays E (trans) configuration about the C2═C3 double bond. A search of the Cambridge Structural Database (version 5.29, updated Jan 2008) (Allen, 2002) produced no structures with the same central fragment (i.e. excluding the phenyl rings) of (I) for proper comparison, but a search for the more restricted fragment X—C(CN)═C(SMe)-N(H)—Y gave three comparable structures, viz. TAKDOZ (Krivokolysko et al., 2002), AJULUM (Kennard et al., 2003) and DALVES (Song et al., 2005). Due to conjugation in the C3═C2—C1≡N1 moiety, the putative single bond C2—C1 shows a significant shortening, similar to the range 1.415 (7)–1.437 (4) Å observed in the aforementioned structures. Bond lengths (see Supplementary Materials) are in good agreement with the tabulated values (Allen et al., 1987), except C24—C25 (1.359 (4) Å), which is ca 0.02 Å shorter than expected.
The title compound displays a six-membered ring involving an intramolecular N—H···O(sulfonyl) bond (Table 1), which is an example of resonance-assisted hydrogen bonding (RAHB) (Gilli et al., 1989), as suggested by the ring bond lengths. Comparison with AJULUM and DALVES, which display similar rings [with N—H···O(carbonyl) and N—H···O(carboxyl) bonds respectively] and TAKDOZ, which does not have RAHB, reveal lengthenings of the C═C distances [AJULUM, 1.371 (2) Å; DALVES, 1.386 (7) Å; TAKDOZ, 1.345 (4) Å] and shortenings of the C—N bonds [AJULUM, 1.360 (2) Å; DALVES, 1.333 (6) Å; TAKDOZ, 1.404 (4) Å]. The situation is less clear in the S═O bond, with S1═O2 (involved in RAHB) just significantly longer than S1═O1. In addition to the RAHB ring, there is an N—H···Cl intramolecular bond. The molecular geometry also allows for a possible C4—H4b···Cg2 intramolecular interaction (Cg2: see below).
In the crystal structure (Fig. 2) bonds of the C—H···O(sulfonyl) type form chains that run along [1 0 1], while N—H···O(sulfonyl) bonds connect centrosymmetrycally related atoms of pairs of these chains, to form ribbons. Comparison of the N···O distances of the intra- and intermolecular N—H···O(sulfonyl) bonds reveals that the π-bond cooperativity results in a strengthening of the intramolecular hydrogen bond, as indicated by the significant shortening of the corresponding N···O distance. There are also π-π interactions between phenyl rings of pairs of centrosymmetrically related molecules, with Cg1···Cg2(2 - x, 1 - y, -z), 3.8612 (13) Å (Cgm: centroid of ring Cm1—Cm6, m = 1, 2).