organic compounds
(11R,11aS)-11-Hydroxy-1,5,11,11a-tetrahydro-1-benzothieno[2,3-f]indolizin-3(2H)-one
aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk
The 14H13NO2S, was assigned from the synthesis and confirmed by the The central six-membered ring of the indolizine system adopts an the greatest deviation from the mean plane of the ring being 0.459 (2) Å for the N atom. The benzothieno system is planar [mean deviation = 0.009 (2) Å]. In the molecules form chains parallel to the b axis via intermolecular O—H⋯O hydrogen bonds.
of the title compound, CRelated literature
For related literature, see: Campagna et al. (1990); Camus et al. (2000); Gubin et al. (1992); Gupta et al. (2003); Malonne et al. (1998); Medda et al. (2003); Mitsumori et al. (2004); Nardelli (1983); Ostrander et al. (1988); Pearson & Guo (2001); Ruprecht et al. (1989); Sonnet et al. (2000); Teklu et al. (2005); Vlahovici et al. (2002); Vrábel et al. (2004); Šafář et al. (2008).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536808015456/bq2077sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015456/bq2077Isup2.hkl
The title compound (11R,11aS)-11-hydroxy-1,5,11,11a-tetrahydro[1] benzothieno[2,3-f]indolizin-3(2H)-one was prepared according literature procedures of Šafář, et al. (2008).
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and O—H distance 0.85Å and Uiso set at 1.2Ueq of the parent atom. The
has been determined. The number of Friedel pairs is 1259.Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).C14H13NO2S | F(000) = 544 |
Mr = 259.31 | Dx = 1.461 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 22009 reflections |
a = 7.6614 (1) Å | θ = 3.1–26.4° |
b = 11.7733 (2) Å | µ = 0.27 mm−1 |
c = 13.0736 (2) Å | T = 298 K |
V = 1179.24 (3) Å3 | Block, white |
Z = 4 | 0.50 × 0.30 × 0.28 mm |
Oxford Diffraction Gemini R CCD diffractometer | 3149 independent reflections |
Radiation source: fine-focus sealed tube | 2599 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 26.6°, θmin = 3.1° |
Rotation method data acquisition using ω and ϕ scans | h = −10→10 |
Absorption correction: analytical (Clark & Reid, 1995) | k = −16→15 |
Tmin = 0.867, Tmax = 0.941 | l = −17→17 |
32596 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2112P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.21 e Å−3 |
3149 reflections | Δρmin = −0.17 e Å−3 |
165 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0198 (16) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1259 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.01 (6) |
C14H13NO2S | V = 1179.24 (3) Å3 |
Mr = 259.31 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.6614 (1) Å | µ = 0.27 mm−1 |
b = 11.7733 (2) Å | T = 298 K |
c = 13.0736 (2) Å | 0.50 × 0.30 × 0.28 mm |
Oxford Diffraction Gemini R CCD diffractometer | 3149 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 2599 reflections with I > 2σ(I) |
Tmin = 0.867, Tmax = 0.941 | Rint = 0.019 |
32596 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.076 | Δρmax = 0.21 e Å−3 |
S = 1.04 | Δρmin = −0.17 e Å−3 |
3149 reflections | Absolute structure: Flack (1983), 1259 Friedel pairs |
165 parameters | Absolute structure parameter: 0.01 (6) |
0 restraints |
Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.1944 (2) | 1.03675 (13) | 0.20976 (13) | 0.0455 (3) | |
C3 | 0.1497 (3) | 1.05817 (14) | 0.09913 (15) | 0.0557 (4) | |
H3A | 0.0504 | 1.1089 | 0.0935 | 0.067* | |
H3B | 0.2480 | 1.0916 | 0.0634 | 0.067* | |
C4 | 0.1063 (3) | 0.94225 (15) | 0.05531 (14) | 0.0582 (5) | |
H4A | 0.2014 | 0.9147 | 0.0131 | 0.070* | |
H4B | 0.0012 | 0.9459 | 0.0140 | 0.070* | |
C5 | 0.0789 (2) | 0.86434 (13) | 0.14788 (12) | 0.0404 (3) | |
H5 | −0.0462 | 0.8611 | 0.1634 | 0.048* | |
C6 | 0.14675 (19) | 0.74306 (12) | 0.13407 (10) | 0.0378 (3) | |
H6 | 0.2456 | 0.7462 | 0.0866 | 0.045* | |
C7 | 0.21221 (18) | 0.69361 (12) | 0.23315 (10) | 0.0354 (3) | |
C8 | 0.27062 (19) | 0.57799 (12) | 0.24570 (11) | 0.0372 (3) | |
C9 | 0.2764 (2) | 0.48925 (13) | 0.17477 (12) | 0.0440 (4) | |
H9 | 0.2386 | 0.5010 | 0.1080 | 0.053* | |
C10 | 0.3382 (2) | 0.38453 (14) | 0.20415 (15) | 0.0509 (4) | |
H10 | 0.3420 | 0.3257 | 0.1567 | 0.061* | |
C11 | 0.3952 (2) | 0.36526 (14) | 0.30371 (15) | 0.0517 (4) | |
H11 | 0.4352 | 0.2935 | 0.3221 | 0.062* | |
C12 | 0.3932 (2) | 0.45092 (14) | 0.37530 (14) | 0.0475 (4) | |
H12 | 0.4322 | 0.4383 | 0.4417 | 0.057* | |
C13 | 0.33100 (19) | 0.55722 (12) | 0.34551 (11) | 0.0397 (3) | |
C14 | 0.23124 (19) | 0.75541 (12) | 0.31979 (10) | 0.0382 (3) | |
C15 | 0.1883 (3) | 0.87867 (12) | 0.33040 (11) | 0.0455 (3) | |
H15A | 0.0815 | 0.8878 | 0.3694 | 0.055* | |
H15B | 0.2816 | 0.9177 | 0.3662 | 0.055* | |
N1 | 0.16682 (18) | 0.92626 (10) | 0.22933 (10) | 0.0413 (3) | |
O1 | 0.24479 (19) | 1.10666 (10) | 0.27209 (11) | 0.0614 (3) | |
O2 | 0.01482 (15) | 0.67549 (10) | 0.08796 (8) | 0.0503 (3) | |
H2 | −0.0601 | 0.6601 | 0.1306 | 0.076* | |
S1 | 0.31793 (6) | 0.67853 (3) | 0.42095 (3) | 0.04613 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0448 (8) | 0.0367 (7) | 0.0551 (9) | 0.0070 (7) | 0.0090 (8) | 0.0030 (7) |
C3 | 0.0607 (10) | 0.0477 (8) | 0.0586 (10) | 0.0112 (8) | 0.0067 (8) | 0.0151 (8) |
C4 | 0.0766 (12) | 0.0550 (10) | 0.0431 (9) | 0.0100 (9) | −0.0054 (8) | 0.0113 (7) |
C5 | 0.0390 (7) | 0.0453 (8) | 0.0369 (7) | 0.0062 (6) | 0.0006 (6) | 0.0016 (6) |
C6 | 0.0422 (7) | 0.0422 (7) | 0.0290 (6) | 0.0025 (6) | 0.0025 (5) | 0.0004 (5) |
C7 | 0.0382 (7) | 0.0377 (7) | 0.0302 (6) | −0.0005 (6) | 0.0023 (5) | 0.0020 (5) |
C8 | 0.0360 (7) | 0.0384 (7) | 0.0371 (7) | −0.0011 (5) | 0.0027 (6) | 0.0025 (5) |
C9 | 0.0455 (9) | 0.0424 (8) | 0.0440 (8) | 0.0016 (6) | 0.0044 (7) | −0.0026 (6) |
C10 | 0.0487 (9) | 0.0423 (8) | 0.0618 (10) | 0.0047 (7) | 0.0083 (8) | −0.0046 (7) |
C11 | 0.0423 (8) | 0.0401 (8) | 0.0727 (11) | 0.0050 (7) | 0.0049 (8) | 0.0099 (8) |
C12 | 0.0417 (8) | 0.0485 (9) | 0.0523 (9) | 0.0003 (7) | −0.0017 (7) | 0.0131 (8) |
C13 | 0.0393 (7) | 0.0411 (7) | 0.0389 (7) | −0.0018 (6) | 0.0016 (6) | 0.0050 (6) |
C14 | 0.0466 (8) | 0.0370 (7) | 0.0309 (6) | −0.0023 (6) | 0.0010 (6) | 0.0016 (5) |
C15 | 0.0620 (10) | 0.0398 (7) | 0.0348 (7) | 0.0024 (7) | 0.0027 (7) | −0.0025 (6) |
N1 | 0.0494 (7) | 0.0368 (6) | 0.0377 (6) | 0.0035 (5) | 0.0022 (6) | 0.0005 (5) |
O1 | 0.0725 (8) | 0.0396 (6) | 0.0720 (8) | 0.0007 (6) | 0.0049 (7) | −0.0072 (6) |
O2 | 0.0591 (7) | 0.0554 (6) | 0.0365 (5) | −0.0017 (6) | −0.0071 (5) | −0.0085 (6) |
S1 | 0.0593 (2) | 0.04554 (19) | 0.03357 (17) | −0.00295 (18) | −0.00694 (17) | 0.00349 (16) |
C2—O1 | 1.221 (2) | C8—C9 | 1.398 (2) |
C2—N1 | 1.3426 (19) | C8—C13 | 1.406 (2) |
C2—C3 | 1.508 (2) | C9—C10 | 1.375 (2) |
C3—C4 | 1.517 (3) | C9—H9 | 0.9300 |
C3—H3A | 0.9700 | C10—C11 | 1.392 (3) |
C3—H3B | 0.9700 | C10—H10 | 0.9300 |
C4—C5 | 1.533 (2) | C11—C12 | 1.376 (3) |
C4—H4A | 0.9700 | C11—H11 | 0.9300 |
C4—H4B | 0.9700 | C12—C13 | 1.395 (2) |
C5—N1 | 1.456 (2) | C12—H12 | 0.9300 |
C5—C6 | 1.530 (2) | C13—S1 | 1.7385 (15) |
C5—H5 | 0.9800 | C14—C15 | 1.494 (2) |
C6—O2 | 1.4206 (18) | C14—S1 | 1.7348 (14) |
C6—C7 | 1.5061 (18) | C15—N1 | 1.4445 (18) |
C6—H6 | 0.9800 | C15—H15A | 0.9700 |
C7—C14 | 1.3541 (19) | C15—H15B | 0.9700 |
C7—C8 | 1.442 (2) | O2—H2 | 0.8200 |
O1—C2—N1 | 125.15 (16) | C9—C8—C7 | 129.79 (13) |
O1—C2—C3 | 126.83 (15) | C13—C8—C7 | 111.83 (12) |
N1—C2—C3 | 108.01 (14) | C10—C9—C8 | 119.72 (15) |
C4—C3—C2 | 105.17 (13) | C10—C9—H9 | 120.1 |
C4—C3—H3A | 110.7 | C8—C9—H9 | 120.1 |
C2—C3—H3A | 110.7 | C9—C10—C11 | 121.02 (16) |
C4—C3—H3B | 110.7 | C9—C10—H10 | 119.5 |
C2—C3—H3B | 110.7 | C11—C10—H10 | 119.5 |
H3A—C3—H3B | 108.8 | C12—C11—C10 | 120.88 (15) |
C3—C4—C5 | 105.67 (14) | C12—C11—H11 | 119.6 |
C3—C4—H4A | 110.6 | C10—C11—H11 | 119.6 |
C5—C4—H4A | 110.6 | C11—C12—C13 | 118.14 (16) |
C3—C4—H4B | 110.6 | C11—C12—H12 | 120.9 |
C5—C4—H4B | 110.6 | C13—C12—H12 | 120.9 |
H4A—C4—H4B | 108.7 | C12—C13—C8 | 121.85 (14) |
N1—C5—C6 | 113.35 (12) | C12—C13—S1 | 126.76 (12) |
N1—C5—C4 | 102.39 (13) | C8—C13—S1 | 111.39 (11) |
C6—C5—C4 | 114.74 (13) | C7—C14—C15 | 125.15 (13) |
N1—C5—H5 | 108.7 | C7—C14—S1 | 113.49 (11) |
C6—C5—H5 | 108.7 | C15—C14—S1 | 121.35 (11) |
C4—C5—H5 | 108.7 | N1—C15—C14 | 108.47 (12) |
O2—C6—C7 | 112.67 (12) | N1—C15—H15A | 110.0 |
O2—C6—C5 | 109.32 (12) | C14—C15—H15A | 110.0 |
C7—C6—C5 | 111.86 (12) | N1—C15—H15B | 110.0 |
O2—C6—H6 | 107.6 | C14—C15—H15B | 110.0 |
C7—C6—H6 | 107.6 | H15A—C15—H15B | 108.4 |
C5—C6—H6 | 107.6 | C2—N1—C15 | 122.16 (13) |
C14—C7—C8 | 112.24 (12) | C2—N1—C5 | 114.75 (13) |
C14—C7—C6 | 123.20 (12) | C15—N1—C5 | 121.84 (12) |
C8—C7—C6 | 124.47 (12) | C6—O2—H2 | 109.5 |
C9—C8—C13 | 118.38 (13) | C14—S1—C13 | 91.04 (7) |
O1—C2—C3—C4 | 176.43 (17) | C9—C8—C13—C12 | −1.0 (2) |
N1—C2—C3—C4 | −4.46 (19) | C7—C8—C13—C12 | 179.72 (14) |
C2—C3—C4—C5 | 15.15 (19) | C9—C8—C13—S1 | 178.57 (12) |
C3—C4—C5—N1 | −19.57 (18) | C7—C8—C13—S1 | −0.73 (16) |
C3—C4—C5—C6 | −142.81 (14) | C8—C7—C14—C15 | 177.89 (15) |
N1—C5—C6—O2 | 155.60 (12) | C6—C7—C14—C15 | 1.1 (2) |
C4—C5—C6—O2 | −87.26 (15) | C8—C7—C14—S1 | −0.54 (16) |
N1—C5—C6—C7 | 30.10 (17) | C6—C7—C14—S1 | −177.34 (11) |
C4—C5—C6—C7 | 147.24 (14) | C7—C14—C15—N1 | −14.4 (2) |
O2—C6—C7—C14 | −132.48 (14) | S1—C14—C15—N1 | 163.94 (11) |
C5—C6—C7—C14 | −8.85 (19) | O1—C2—N1—C15 | 2.6 (3) |
O2—C6—C7—C8 | 51.11 (18) | C3—C2—N1—C15 | −176.58 (15) |
C5—C6—C7—C8 | 174.74 (13) | O1—C2—N1—C5 | 169.96 (16) |
C14—C7—C8—C9 | −178.38 (16) | C3—C2—N1—C5 | −9.17 (18) |
C6—C7—C8—C9 | −1.6 (2) | C14—C15—N1—C2 | −153.70 (14) |
C14—C7—C8—C13 | 0.81 (18) | C14—C15—N1—C5 | 39.8 (2) |
C6—C7—C8—C13 | 177.57 (13) | C6—C5—N1—C2 | 142.58 (13) |
C13—C8—C9—C10 | 0.8 (2) | C4—C5—N1—C2 | 18.41 (17) |
C7—C8—C9—C10 | 179.94 (16) | C6—C5—N1—C15 | −49.97 (19) |
C8—C9—C10—C11 | 0.1 (3) | C4—C5—N1—C15 | −174.13 (15) |
C9—C10—C11—C12 | −0.8 (3) | C7—C14—S1—C13 | 0.10 (12) |
C10—C11—C12—C13 | 0.6 (2) | C15—C14—S1—C13 | −178.39 (13) |
C11—C12—C13—C8 | 0.3 (2) | C12—C13—S1—C14 | 179.90 (14) |
C11—C12—C13—S1 | −179.18 (12) | C8—C13—S1—C14 | 0.37 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 2.00 | 2.822 (2) | 174 |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H13NO2S |
Mr | 259.31 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 7.6614 (1), 11.7733 (2), 13.0736 (2) |
V (Å3) | 1179.24 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.50 × 0.30 × 0.28 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Analytical (Clark & Reid, 1995) |
Tmin, Tmax | 0.867, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32596, 3149, 2599 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.04 |
No. of reflections | 3149 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.17 |
Absolute structure | Flack (1983), 1259 Friedel pairs |
Absolute structure parameter | 0.01 (6) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 2.00 | 2.822 (2) | 174.1 |
Symmetry code: (i) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0817/08 and 1/0161/08) as well as the Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany. Google Scholar
Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107. CrossRef CAS Google Scholar
Camus, F., Norberg, B., Legrand, A., Rigo, B., Durant, F. & Wouters, J. (2000). Acta Cryst. C56, 193–196. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988. CrossRef PubMed CAS Web of Science Google Scholar
Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873. Web of Science CrossRef PubMed CAS Google Scholar
Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–242. CAS Google Scholar
Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128. Web of Science CrossRef PubMed CAS Google Scholar
Mitsumori, T., Bendikov, M., Dautel, O., Wudl, F., Shioya, T., Sato, H. & Sato, Y. (2004). J. Am. Chem. Soc. 126, 16793–19803. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ostrander, G. K., Scribner, N. K. & Rohrschneider, L. R. (1988). Cancer Res. 48, 1091–1094. CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271. Web of Science CrossRef CAS Google Scholar
Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquired Immune Defic. Syndr. 2, 149–157. CAS Google Scholar
Šafář, P., Žúžiová, J., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Dalla, V. & Daich, A. (2008). Tetrahedron Asymmetry, 19 In the press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955. Web of Science CrossRef PubMed CAS Google Scholar
Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139. Web of Science CrossRef PubMed CAS Google Scholar
Vlahovici, A., Andrei, M. & Druta, I. (2002). J. Lumin. 96, 279–285. Web of Science CrossRef CAS Google Scholar
Vrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932–o933. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cancer (Ostrander et al., 1988), cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989). Polycyclic indolizine derivatives have been found to have high-efficiency long-wavelength fluorescence quantum yield (Vlahovici et al., 2002). The synthesis of polycyclic indolizine derivatives has recently attracted much research interest in the search for new opto-electric materials (Mitsumori et al., 2004). As part of our recent efforts to synthesize novel polycyclic indolizine derivative, we report here the synthesis and molecular and crystal structure of the title compound, (I) (Fig. 1). The absolute configuration has been established without ambiguity from the anomalous dispersion of the S atom [absolute structure parameter 0.01 (6) (Flack, 1983)] and assigned consistent with the starting material. The expected stereochemistry of atoms C5 and C6 was confirmed as S and R, respectively (Fig. 1). The central N-heterocyclic ring is not planar and adopts an envelope conformation (Nardelli, 1983). A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms C5, C6, C7, C14 and C15 are planar to within 0.061 (3) Å, while atom N1 is displaced from this plane with out-of-plane displacement of 0.459 (2) Å. The pyrrolidin-2-one ring is distorted towards a flat-envelope conformation, with atom C5 on the flap. Atom C5 is 0.291 (2)Å from the mean plane defined by atoms N1, C2, C3 and C4. The molecule as a whole is nonplanar but consist of two approximately planar segments, C5, C6, C7, C8, C9, C10, C11, C12, C13, S1, C14, C15 [r.m.s. deviation 0.086 (2) Å] and N1, C2, O1, C3, C4 [r.m.s. deviation 0.046 (3) Å] with dihedral angle 27.0 (1)°. Atom N1 is sp2-hybridized, as evidenced by the sum of the valence angles around it (358.8°). These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl, similar to what is observed for amides. Intermolecular O—H···O hydrogen bonds link the molecules of (I) into infinite chains, which run parallel to the b axis (Fig. 2 and Table 2) and help to stabilize the crystal structure of the compound. The bond lengths of the carbonyl group C2=O1 is 1.221 (2)Å somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates in intermolecular hydrogen bond. The bond lengths and angles in the indolizine ring system are comparable with those in related structures (Camus, et al., 2000; Vrábel, et al., 2004).