organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1164-o1165

(11R,11aS)-11-Hydr­­oxy-1,5,11,11a-tetra­hydro-1-benzothieno[2,3-f]indolizin-3(2H)-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 17 April 2008; accepted 22 May 2008; online 30 May 2008)

The absolute configuration of the title compound, C14H13NO2S, was assigned from the synthesis and confirmed by the structure determination. The central six-membered ring of the indolizine system adopts an envelope conformation, the greatest deviation from the mean plane of the ring being 0.459 (2) Å for the N atom. The benzothieno system is planar [mean deviation = 0.009 (2) Å]. In the crystal structure, mol­ecules form chains parallel to the b axis via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Campagna et al. (1990[Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97-107.]); Camus et al. (2000[Camus, F., Norberg, B., Legrand, A., Rigo, B., Durant, F. & Wouters, J. (2000). Acta Cryst. C56, 193-196.]); Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-242.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Mitsumori et al. (2004[Mitsumori, T., Bendikov, M., Dautel, O., Wudl, F., Shioya, T., Sato, H. & Sato, Y. (2004). J. Am. Chem. Soc. 126, 16793-19803.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Ostrander et al. (1988[Ostrander, G. K., Scribner, N. K. & Rohrschneider, L. R. (1988). Cancer Res. 48, 1091-1094.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Ruprecht et al. (1989[Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquired Immune Defic. Syndr. 2, 149-157.]); Sonnet et al. (2000[Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945-955.]); Teklu et al. (2005[Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]); Vlahovici et al. (2002[Vlahovici, A., Andrei, M. & Druta, I. (2002). J. Lumin. 96, 279-285.]); Vrábel et al. (2004[Vrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932-o933.]); Šafář et al. (2008[Šafář, P., Žúžiová, J., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Dalla, V. & Daich, A. (2008). Tetrahedron Asymmetry, 19 In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2S

  • Mr = 259.31

  • Orthorhombic, P 21 21 21

  • a = 7.6614 (1) Å

  • b = 11.7733 (2) Å

  • c = 13.0736 (2) Å

  • V = 1179.24 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.50 × 0.30 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.867, Tmax = 0.941

  • 32596 measured reflections

  • 3149 independent reflections

  • 2599 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.04

  • 3149 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1259 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.00 2.822 (2) 174
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cancer (Ostrander et al., 1988), cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989). Polycyclic indolizine derivatives have been found to have high-efficiency long-wavelength fluorescence quantum yield (Vlahovici et al., 2002). The synthesis of polycyclic indolizine derivatives has recently attracted much research interest in the search for new opto-electric materials (Mitsumori et al., 2004). As part of our recent efforts to synthesize novel polycyclic indolizine derivative, we report here the synthesis and molecular and crystal structure of the title compound, (I) (Fig. 1). The absolute configuration has been established without ambiguity from the anomalous dispersion of the S atom [absolute structure parameter 0.01 (6) (Flack, 1983)] and assigned consistent with the starting material. The expected stereochemistry of atoms C5 and C6 was confirmed as S and R, respectively (Fig. 1). The central N-heterocyclic ring is not planar and adopts an envelope conformation (Nardelli, 1983). A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms C5, C6, C7, C14 and C15 are planar to within 0.061 (3) Å, while atom N1 is displaced from this plane with out-of-plane displacement of 0.459 (2) Å. The pyrrolidin-2-one ring is distorted towards a flat-envelope conformation, with atom C5 on the flap. Atom C5 is 0.291 (2)Å from the mean plane defined by atoms N1, C2, C3 and C4. The molecule as a whole is nonplanar but consist of two approximately planar segments, C5, C6, C7, C8, C9, C10, C11, C12, C13, S1, C14, C15 [r.m.s. deviation 0.086 (2) Å] and N1, C2, O1, C3, C4 [r.m.s. deviation 0.046 (3) Å] with dihedral angle 27.0 (1)°. Atom N1 is sp2-hybridized, as evidenced by the sum of the valence angles around it (358.8°). These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl, similar to what is observed for amides. Intermolecular O—H···O hydrogen bonds link the molecules of (I) into infinite chains, which run parallel to the b axis (Fig. 2 and Table 2) and help to stabilize the crystal structure of the compound. The bond lengths of the carbonyl group C2=O1 is 1.221 (2)Å somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates in intermolecular hydrogen bond. The bond lengths and angles in the indolizine ring system are comparable with those in related structures (Camus, et al., 2000; Vrábel, et al., 2004).

Related literature top

For related literature, see: Campagna et al. (1990); Camus et al. (2000); Gubin et al. (1992); Gupta et al. (2003); Malonne et al. (1998); Medda et al. (2003); Mitsumori et al. (2004); Nardelli (1983); Ostrander et al. (1988); Pearson & Guo (2001); Ruprecht et al. (1989); Sonnet et al. (2000); Teklu et al. (2005); Vlahovici et al. (2002); Vrábel et al. (2004); Šafář et al. (2008).

Experimental top

The title compound (11R,11aS)-11-hydroxy-1,5,11,11a-tetrahydro[1] benzothieno[2,3-f]indolizin-3(2H)-one was prepared according literature procedures of Šafář, et al. (2008).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and O—H distance 0.85Å and Uiso set at 1.2Ueq of the parent atom. The absolute configuration has been determined. The number of Friedel pairs is 1259.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the compound (I). Dashed lines indicate hydrogen bonds.
(11R,11aS)-11-Hydroxy-1,5,11,11a-tetrahydro- 1-benzothieno[2,3-f]indolizin-3(2H)-one top
Crystal data top
C14H13NO2SF(000) = 544
Mr = 259.31Dx = 1.461 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 22009 reflections
a = 7.6614 (1) Åθ = 3.1–26.4°
b = 11.7733 (2) ŵ = 0.27 mm1
c = 13.0736 (2) ÅT = 298 K
V = 1179.24 (3) Å3Block, white
Z = 40.50 × 0.30 × 0.28 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3149 independent reflections
Radiation source: fine-focus sealed tube2599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.4340 pixels mm-1θmax = 26.6°, θmin = 3.1°
Rotation method data acquisition using ω and ϕ scansh = 1010
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1615
Tmin = 0.867, Tmax = 0.941l = 1717
32596 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2112P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
3149 reflectionsΔρmin = 0.17 e Å3
165 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0198 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1259 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (6)
Crystal data top
C14H13NO2SV = 1179.24 (3) Å3
Mr = 259.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6614 (1) ŵ = 0.27 mm1
b = 11.7733 (2) ÅT = 298 K
c = 13.0736 (2) Å0.50 × 0.30 × 0.28 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3149 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
2599 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.941Rint = 0.019
32596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.17 e Å3
3149 reflectionsAbsolute structure: Flack (1983), 1259 Friedel pairs
165 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1944 (2)1.03675 (13)0.20976 (13)0.0455 (3)
C30.1497 (3)1.05817 (14)0.09913 (15)0.0557 (4)
H3A0.05041.10890.09350.067*
H3B0.24801.09160.06340.067*
C40.1063 (3)0.94225 (15)0.05531 (14)0.0582 (5)
H4A0.20140.91470.01310.070*
H4B0.00120.94590.01400.070*
C50.0789 (2)0.86434 (13)0.14788 (12)0.0404 (3)
H50.04620.86110.16340.048*
C60.14675 (19)0.74306 (12)0.13407 (10)0.0378 (3)
H60.24560.74620.08660.045*
C70.21221 (18)0.69361 (12)0.23315 (10)0.0354 (3)
C80.27062 (19)0.57799 (12)0.24570 (11)0.0372 (3)
C90.2764 (2)0.48925 (13)0.17477 (12)0.0440 (4)
H90.23860.50100.10800.053*
C100.3382 (2)0.38453 (14)0.20415 (15)0.0509 (4)
H100.34200.32570.15670.061*
C110.3952 (2)0.36526 (14)0.30371 (15)0.0517 (4)
H110.43520.29350.32210.062*
C120.3932 (2)0.45092 (14)0.37530 (14)0.0475 (4)
H120.43220.43830.44170.057*
C130.33100 (19)0.55722 (12)0.34551 (11)0.0397 (3)
C140.23124 (19)0.75541 (12)0.31979 (10)0.0382 (3)
C150.1883 (3)0.87867 (12)0.33040 (11)0.0455 (3)
H15A0.08150.88780.36940.055*
H15B0.28160.91770.36620.055*
N10.16682 (18)0.92626 (10)0.22933 (10)0.0413 (3)
O10.24479 (19)1.10666 (10)0.27209 (11)0.0614 (3)
O20.01482 (15)0.67549 (10)0.08796 (8)0.0503 (3)
H20.06010.66010.13060.076*
S10.31793 (6)0.67853 (3)0.42095 (3)0.04613 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0448 (8)0.0367 (7)0.0551 (9)0.0070 (7)0.0090 (8)0.0030 (7)
C30.0607 (10)0.0477 (8)0.0586 (10)0.0112 (8)0.0067 (8)0.0151 (8)
C40.0766 (12)0.0550 (10)0.0431 (9)0.0100 (9)0.0054 (8)0.0113 (7)
C50.0390 (7)0.0453 (8)0.0369 (7)0.0062 (6)0.0006 (6)0.0016 (6)
C60.0422 (7)0.0422 (7)0.0290 (6)0.0025 (6)0.0025 (5)0.0004 (5)
C70.0382 (7)0.0377 (7)0.0302 (6)0.0005 (6)0.0023 (5)0.0020 (5)
C80.0360 (7)0.0384 (7)0.0371 (7)0.0011 (5)0.0027 (6)0.0025 (5)
C90.0455 (9)0.0424 (8)0.0440 (8)0.0016 (6)0.0044 (7)0.0026 (6)
C100.0487 (9)0.0423 (8)0.0618 (10)0.0047 (7)0.0083 (8)0.0046 (7)
C110.0423 (8)0.0401 (8)0.0727 (11)0.0050 (7)0.0049 (8)0.0099 (8)
C120.0417 (8)0.0485 (9)0.0523 (9)0.0003 (7)0.0017 (7)0.0131 (8)
C130.0393 (7)0.0411 (7)0.0389 (7)0.0018 (6)0.0016 (6)0.0050 (6)
C140.0466 (8)0.0370 (7)0.0309 (6)0.0023 (6)0.0010 (6)0.0016 (5)
C150.0620 (10)0.0398 (7)0.0348 (7)0.0024 (7)0.0027 (7)0.0025 (6)
N10.0494 (7)0.0368 (6)0.0377 (6)0.0035 (5)0.0022 (6)0.0005 (5)
O10.0725 (8)0.0396 (6)0.0720 (8)0.0007 (6)0.0049 (7)0.0072 (6)
O20.0591 (7)0.0554 (6)0.0365 (5)0.0017 (6)0.0071 (5)0.0085 (6)
S10.0593 (2)0.04554 (19)0.03357 (17)0.00295 (18)0.00694 (17)0.00349 (16)
Geometric parameters (Å, º) top
C2—O11.221 (2)C8—C91.398 (2)
C2—N11.3426 (19)C8—C131.406 (2)
C2—C31.508 (2)C9—C101.375 (2)
C3—C41.517 (3)C9—H90.9300
C3—H3A0.9700C10—C111.392 (3)
C3—H3B0.9700C10—H100.9300
C4—C51.533 (2)C11—C121.376 (3)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.395 (2)
C5—N11.456 (2)C12—H120.9300
C5—C61.530 (2)C13—S11.7385 (15)
C5—H50.9800C14—C151.494 (2)
C6—O21.4206 (18)C14—S11.7348 (14)
C6—C71.5061 (18)C15—N11.4445 (18)
C6—H60.9800C15—H15A0.9700
C7—C141.3541 (19)C15—H15B0.9700
C7—C81.442 (2)O2—H20.8200
O1—C2—N1125.15 (16)C9—C8—C7129.79 (13)
O1—C2—C3126.83 (15)C13—C8—C7111.83 (12)
N1—C2—C3108.01 (14)C10—C9—C8119.72 (15)
C4—C3—C2105.17 (13)C10—C9—H9120.1
C4—C3—H3A110.7C8—C9—H9120.1
C2—C3—H3A110.7C9—C10—C11121.02 (16)
C4—C3—H3B110.7C9—C10—H10119.5
C2—C3—H3B110.7C11—C10—H10119.5
H3A—C3—H3B108.8C12—C11—C10120.88 (15)
C3—C4—C5105.67 (14)C12—C11—H11119.6
C3—C4—H4A110.6C10—C11—H11119.6
C5—C4—H4A110.6C11—C12—C13118.14 (16)
C3—C4—H4B110.6C11—C12—H12120.9
C5—C4—H4B110.6C13—C12—H12120.9
H4A—C4—H4B108.7C12—C13—C8121.85 (14)
N1—C5—C6113.35 (12)C12—C13—S1126.76 (12)
N1—C5—C4102.39 (13)C8—C13—S1111.39 (11)
C6—C5—C4114.74 (13)C7—C14—C15125.15 (13)
N1—C5—H5108.7C7—C14—S1113.49 (11)
C6—C5—H5108.7C15—C14—S1121.35 (11)
C4—C5—H5108.7N1—C15—C14108.47 (12)
O2—C6—C7112.67 (12)N1—C15—H15A110.0
O2—C6—C5109.32 (12)C14—C15—H15A110.0
C7—C6—C5111.86 (12)N1—C15—H15B110.0
O2—C6—H6107.6C14—C15—H15B110.0
C7—C6—H6107.6H15A—C15—H15B108.4
C5—C6—H6107.6C2—N1—C15122.16 (13)
C14—C7—C8112.24 (12)C2—N1—C5114.75 (13)
C14—C7—C6123.20 (12)C15—N1—C5121.84 (12)
C8—C7—C6124.47 (12)C6—O2—H2109.5
C9—C8—C13118.38 (13)C14—S1—C1391.04 (7)
O1—C2—C3—C4176.43 (17)C9—C8—C13—C121.0 (2)
N1—C2—C3—C44.46 (19)C7—C8—C13—C12179.72 (14)
C2—C3—C4—C515.15 (19)C9—C8—C13—S1178.57 (12)
C3—C4—C5—N119.57 (18)C7—C8—C13—S10.73 (16)
C3—C4—C5—C6142.81 (14)C8—C7—C14—C15177.89 (15)
N1—C5—C6—O2155.60 (12)C6—C7—C14—C151.1 (2)
C4—C5—C6—O287.26 (15)C8—C7—C14—S10.54 (16)
N1—C5—C6—C730.10 (17)C6—C7—C14—S1177.34 (11)
C4—C5—C6—C7147.24 (14)C7—C14—C15—N114.4 (2)
O2—C6—C7—C14132.48 (14)S1—C14—C15—N1163.94 (11)
C5—C6—C7—C148.85 (19)O1—C2—N1—C152.6 (3)
O2—C6—C7—C851.11 (18)C3—C2—N1—C15176.58 (15)
C5—C6—C7—C8174.74 (13)O1—C2—N1—C5169.96 (16)
C14—C7—C8—C9178.38 (16)C3—C2—N1—C59.17 (18)
C6—C7—C8—C91.6 (2)C14—C15—N1—C2153.70 (14)
C14—C7—C8—C130.81 (18)C14—C15—N1—C539.8 (2)
C6—C7—C8—C13177.57 (13)C6—C5—N1—C2142.58 (13)
C13—C8—C9—C100.8 (2)C4—C5—N1—C218.41 (17)
C7—C8—C9—C10179.94 (16)C6—C5—N1—C1549.97 (19)
C8—C9—C10—C110.1 (3)C4—C5—N1—C15174.13 (15)
C9—C10—C11—C120.8 (3)C7—C14—S1—C130.10 (12)
C10—C11—C12—C130.6 (2)C15—C14—S1—C13178.39 (13)
C11—C12—C13—C80.3 (2)C12—C13—S1—C14179.90 (14)
C11—C12—C13—S1179.18 (12)C8—C13—S1—C140.37 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.002.822 (2)174
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2S
Mr259.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.6614 (1), 11.7733 (2), 13.0736 (2)
V3)1179.24 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.50 × 0.30 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.867, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
32596, 3149, 2599
Rint0.019
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.04
No. of reflections3149
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17
Absolute structureFlack (1983), 1259 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.002.822 (2)174.1
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0817/08 and 1/0161/08) as well as the Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.  CrossRef CAS Google Scholar
First citationCamus, F., Norberg, B., Legrand, A., Rigo, B., Durant, F. & Wouters, J. (2000). Acta Cryst. C56, 193–196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–242.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitsumori, T., Bendikov, M., Dautel, O., Wudl, F., Shioya, T., Sato, H. & Sato, Y. (2004). J. Am. Chem. Soc. 126, 16793–19803.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOstrander, G. K., Scribner, N. K. & Rohrschneider, L. R. (1988). Cancer Res. 48, 1091–1094.  CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationRuprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquired Immune Defic. Syndr. 2, 149–157.  CAS Google Scholar
First citationŠafář, P., Žúžiová, J., Marchalín, Š., Prónayová, N., Švorc, Ľ., Vrábel, V., Dalla, V. & Daich, A. (2008). Tetrahedron Asymmetry, 19 In the press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTeklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVlahovici, A., Andrei, M. & Druta, I. (2002). J. Lumin. 96, 279–285.  Web of Science CrossRef CAS Google Scholar
First citationVrábel, V., Kožíšek, J., Langer, V. & Marchalín, Š. (2004). Acta Cryst. E60, o932–o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1164-o1165
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds