organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-4-[(5-methyl-2-furyl)­methyl­ene­amino]-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: ggyn1997@163.com

(Received 6 May 2008; accepted 22 May 2008; online 30 May 2008)

In the title compound, C17H17N3O2, a derivative of 4-amino­anti­pyrine, the structure displays a trans configuration with respect to the imine C=N double bond. The pyrazoline ring is essentially planar and makes a dihedral angle of 55.80 (1)° with the phenyl ring.

Related literature

For related literature, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Carlton et al. (1995[Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341-347.]); Coolen et al. (1999[Coolen, S. A. J., Everaerts, F. M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103-113.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Greisen & Andreasen (1976[Greisen, G. & Andreasen, P. B. (1976). Acta Pharmacol. Toxicol. 38, 49-58.]); Jiang et al. (2000[Jiang, S. X., Bayón, J. E., Ferre, I., Mao, X. Z. & González-Gallego, J. (2000). Vet. Parasitology, 88, 177-186.]); Liang et al. (2002[Liang, H., Yu, Q. & Hu, R.-X. (2002). Transition Met. Chem. 27, 454-457.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547-2554.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2

  • Mr = 295.34

  • Monoclinic, P 21 /c

  • a = 11.811 (7) Å

  • b = 9.997 (6) Å

  • c = 14.116 (9) Å

  • β = 110.963 (9)°

  • V = 1556.4 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.967

  • 5012 measured reflections

  • 2670 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.154

  • S = 1.07

  • 2670 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the role of antipyrine and antipyridine derivatives in biological processes have become a topic of study (Carlton et al., 1995; Coolen et al., 1999; Jiang et al., 2000). Antipyrine is an antipyretic drug that is still being used to measure the total hepatic oxidase activity. The properties of antipyrine make it a suitable marker for oxidative stress (Greisen & Andereasen, 1976). Schiff base ligands have demonstrated significant biological activities and new examples are being tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). These properties stimulated our interest in this field. Crystals of the title compound, (I), were obtained as a new antipyrine Schiff base compound.

The perspective view of the structure and a packing diagram of (I) are illustrated in Fig.1 and 2, respectively. All the bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those observed in a similar antipyrine Schiff base (Liang et al., 2002). As seen from Fig. 1, the pyrazoline ring is essentially planar. Atom O2 deviates from the pyrazoline mean plane by -0.117 (5) Å, whereas atoms C10 and C11 by 0.115 (7) and 0.582 (7) Å, on the same side. The dihedral angle between the pyrazoline ring and the C12—C17 phenyl ring is 55.80 (1) °. The furan ring and the pyrazoline ring are approximately coplanar with the dihedral angle between them of 4.79 (2) °. As expected, the molecular structure adopts a trans configuration about the C6N1 bond.

Related literature top

For related literature, see: Ali et al. (2002); Allen et al. (1987); Carlton et al. (1995); Coolen et al. (1999); Cukurovali et al. (2002); Greisen & Andereasen (1976); Jiang et al. (2000); Liang et al. (2002); Tarafder et al. (2002).

Experimental top

A mixture of 5-methyl-2-furaldehyd (0.1 mmol, 11.0 mg) and 4-aminoantipyrine (0.1 mmol, 20.3 mg) was dissolved in 10 ml methanol, and stirred for about 30 min at room temperature to give a clear yellow solution. After keeping this solution in air for 7 d, yellow block crystals were formed at the bottom of vessel by slowly evaporating the solvent.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C/O)

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the b-axis.
1,5-Dimethyl-4-[(5-methyl-2-furyl)methyleneamino]-2-phenyl-1H-pyrazol- 3(2H)-one top
Crystal data top
C17H17N3O2F(000) = 624
Mr = 295.34Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3656 reflections
a = 11.811 (7) Åθ = 2.6–27.1°
b = 9.997 (6) ŵ = 0.09 mm1
c = 14.116 (9) ÅT = 296 K
β = 110.963 (9)°Block, yellow
V = 1556.4 (16) Å30.40 × 0.40 × 0.40 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2670 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 414
Tmin = 0.967, Tmax = 0.967k = 119
5012 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.5447P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2670 reflectionsΔρmax = 0.17 e Å3
203 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (4)
Crystal data top
C17H17N3O2V = 1556.4 (16) Å3
Mr = 295.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.811 (7) ŵ = 0.09 mm1
b = 9.997 (6) ÅT = 296 K
c = 14.116 (9) Å0.40 × 0.40 × 0.40 mm
β = 110.963 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1904 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.967Rint = 0.097
5012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2670 reflectionsΔρmin = 0.17 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46426 (15)0.0177 (2)0.11946 (13)0.0512 (6)
O20.10583 (17)0.3027 (2)0.15207 (15)0.0696 (7)
N10.23169 (19)0.0950 (2)0.05296 (15)0.0455 (6)
N20.07371 (19)0.1894 (2)0.08553 (15)0.0486 (6)
N30.05032 (19)0.2766 (3)0.00250 (16)0.0519 (7)
C70.1172 (2)0.1547 (3)0.01786 (18)0.0433 (7)
C10.5813 (2)0.0571 (3)0.1754 (2)0.0488 (7)
C80.0317 (2)0.1251 (3)0.07436 (18)0.0449 (7)
C100.0408 (3)0.0357 (3)0.15564 (19)0.0576 (8)
H4A0.04150.08870.21210.086*
H4B0.02750.02380.17730.086*
H4C0.11430.01540.12990.086*
C60.3099 (2)0.1276 (3)0.1398 (2)0.0547 (8)
H50.28840.19060.17880.066*
C90.0665 (2)0.2508 (3)0.0669 (2)0.0486 (7)
C20.6170 (3)0.0008 (4)0.2668 (2)0.0621 (9)
H70.69130.01100.31910.075*
C120.1484 (3)0.3267 (3)0.02341 (19)0.0511 (8)
C40.4294 (2)0.0702 (3)0.1788 (2)0.0525 (8)
C130.2464 (3)0.2472 (4)0.0175 (2)0.0605 (9)
H100.25090.15950.00540.073*
C30.5208 (3)0.0835 (4)0.2690 (2)0.0704 (10)
H110.52060.13710.32270.084*
C150.3310 (4)0.4306 (5)0.0795 (3)0.0885 (14)
H120.39290.46620.09780.106*
C170.1411 (3)0.4580 (4)0.0576 (2)0.0673 (9)
H130.07500.51130.06150.081*
C50.6407 (3)0.1481 (4)0.1252 (2)0.0652 (9)
H14A0.71930.17260.17220.098*
H14B0.64920.10380.06780.098*
H14C0.59210.22700.10290.098*
C110.1602 (3)0.2351 (4)0.1828 (2)0.0852 (13)
H15A0.13210.31760.20150.128*
H15B0.23780.24920.17690.128*
H15C0.16750.16880.23380.128*
C140.3378 (3)0.2996 (5)0.0461 (2)0.0763 (11)
H160.40390.24680.04290.092*
C160.2332 (4)0.5077 (4)0.0854 (3)0.0879 (13)
H170.22880.59530.10860.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (11)0.0633 (14)0.0496 (10)0.0038 (10)0.0134 (8)0.0004 (10)
O20.0511 (13)0.0848 (17)0.0624 (13)0.0078 (12)0.0077 (10)0.0311 (12)
N10.0359 (13)0.0542 (16)0.0473 (12)0.0030 (11)0.0159 (10)0.0022 (11)
N20.0441 (14)0.0550 (16)0.0423 (12)0.0061 (12)0.0099 (10)0.0064 (11)
N30.0401 (13)0.0561 (16)0.0545 (13)0.0049 (12)0.0106 (10)0.0120 (12)
C70.0361 (15)0.0492 (18)0.0442 (14)0.0031 (13)0.0139 (11)0.0025 (13)
C10.0309 (15)0.057 (2)0.0583 (16)0.0012 (13)0.0153 (12)0.0114 (14)
C80.0445 (16)0.0485 (18)0.0441 (14)0.0002 (14)0.0186 (12)0.0029 (13)
C100.0570 (19)0.067 (2)0.0473 (15)0.0056 (17)0.0167 (13)0.0030 (15)
C60.0446 (17)0.065 (2)0.0531 (16)0.0048 (15)0.0158 (13)0.0141 (15)
C90.0405 (16)0.0509 (18)0.0517 (15)0.0003 (14)0.0130 (12)0.0094 (14)
C20.0388 (16)0.073 (2)0.0631 (18)0.0015 (17)0.0039 (13)0.0026 (17)
C120.0445 (17)0.054 (2)0.0485 (15)0.0101 (15)0.0083 (12)0.0002 (14)
C40.0373 (16)0.062 (2)0.0562 (16)0.0004 (14)0.0146 (13)0.0091 (15)
C130.0462 (18)0.067 (2)0.0596 (17)0.0060 (17)0.0080 (14)0.0076 (16)
C30.0514 (19)0.086 (3)0.0624 (18)0.0040 (19)0.0064 (15)0.0222 (18)
C150.060 (2)0.128 (4)0.076 (2)0.039 (3)0.0220 (18)0.011 (2)
C170.068 (2)0.055 (2)0.076 (2)0.0100 (18)0.0231 (17)0.0030 (17)
C50.0510 (18)0.081 (3)0.0661 (18)0.0154 (18)0.0237 (15)0.0138 (18)
C110.084 (2)0.101 (3)0.0503 (17)0.032 (2)0.0009 (17)0.0012 (19)
C140.0406 (19)0.113 (4)0.069 (2)0.010 (2)0.0120 (15)0.005 (2)
C160.097 (3)0.075 (3)0.090 (3)0.035 (3)0.030 (2)0.009 (2)
Geometric parameters (Å, º) top
O1—C41.375 (3)C2—H70.9300
O1—C11.382 (3)C12—C131.382 (4)
O2—C91.237 (3)C12—C171.390 (4)
N1—C61.285 (3)C4—C31.349 (4)
N1—C71.397 (3)C13—C141.383 (5)
N2—C81.359 (3)C13—H100.9300
N2—N31.407 (3)C3—H110.9300
N2—C111.461 (3)C15—C161.366 (6)
N3—C91.401 (3)C15—C141.384 (6)
N3—C121.424 (4)C15—H120.9300
C7—C81.364 (3)C17—C161.375 (5)
C7—C91.435 (4)C17—H130.9300
C1—C21.337 (4)C5—H14A0.9600
C1—C51.475 (4)C5—H14B0.9600
C8—C101.488 (4)C5—H14C0.9600
C10—H4A0.9600C11—H15A0.9600
C10—H4B0.9600C11—H15B0.9600
C10—H4C0.9600C11—H15C0.9600
C6—C41.438 (4)C14—H160.9300
C6—H50.9300C16—H170.9300
C2—C31.414 (4)
C4—O1—C1106.9 (2)C17—C12—N3117.8 (3)
C6—N1—C7120.3 (2)C3—C4—O1109.0 (3)
C8—N2—N3107.33 (19)C3—C4—C6131.8 (3)
C8—N2—C11124.1 (2)O1—C4—C6119.2 (2)
N3—N2—C11116.8 (2)C12—C13—C14119.3 (3)
C9—N3—N2108.6 (2)C12—C13—H10120.4
C9—N3—C12124.9 (2)C14—C13—H10120.4
N2—N3—C12119.8 (2)C4—C3—C2107.5 (3)
C8—C7—N1122.5 (2)C4—C3—H11126.3
C8—C7—C9108.2 (2)C2—C3—H11126.3
N1—C7—C9129.3 (2)C16—C15—C14120.0 (4)
C2—C1—O1109.5 (3)C16—C15—H12120.0
C2—C1—C5133.7 (3)C14—C15—H12120.0
O1—C1—C5116.8 (2)C16—C17—C12118.9 (4)
N2—C8—C7110.0 (2)C16—C17—H13120.5
N2—C8—C10120.7 (2)C12—C17—H13120.5
C7—C8—C10129.3 (3)C1—C5—H14A109.5
C8—C10—H4A109.5C1—C5—H14B109.5
C8—C10—H4B109.5H14A—C5—H14B109.5
H4A—C10—H4B109.5C1—C5—H14C109.5
C8—C10—H4C109.5H14A—C5—H14C109.5
H4A—C10—H4C109.5H14B—C5—H14C109.5
H4B—C10—H4C109.5N2—C11—H15A109.5
N1—C6—C4122.4 (3)N2—C11—H15B109.5
N1—C6—H5118.8H15A—C11—H15B109.5
C4—C6—H5118.8N2—C11—H15C109.5
O2—C9—N3122.4 (3)H15A—C11—H15C109.5
O2—C9—C7132.3 (2)H15B—C11—H15C109.5
N3—C9—C7105.2 (2)C13—C14—C15120.1 (4)
C1—C2—C3107.2 (3)C13—C14—H16120.0
C1—C2—H7126.4C15—C14—H16120.0
C3—C2—H7126.4C15—C16—C17121.1 (4)
C13—C12—C17120.7 (3)C15—C16—H17119.5
C13—C12—N3121.6 (3)C17—C16—H17119.5

Experimental details

Crystal data
Chemical formulaC17H17N3O2
Mr295.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.811 (7), 9.997 (6), 14.116 (9)
β (°) 110.963 (9)
V3)1556.4 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.967, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
5012, 2670, 1904
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.154, 1.07
No. of reflections2670
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful for the support of a special research grant (No. 05jk136) of the Education Department of Shaanxi Province.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341–347.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCoolen, S. A. J., Everaerts, F. M. & Huf, F. A. (1999). J. Chromatogr. B, 732, 103–113.  CrossRef CAS Google Scholar
First citationCukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationGreisen, G. & Andreasen, P. B. (1976). Acta Pharmacol. Toxicol. 38, 49–58.  CrossRef CAS Google Scholar
First citationJiang, S. X., Bayón, J. E., Ferre, I., Mao, X. Z. & González-Gallego, J. (2000). Vet. Parasitology, 88, 177–186.  Web of Science CrossRef CAS Google Scholar
First citationLiang, H., Yu, Q. & Hu, R.-X. (2002). Transition Met. Chem. 27, 454–457.  CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds