inorganic compounds
Lutetium ultraphosphate
aUnité de Recherches de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95 Hammam-Lif, 2050, Tunisia
*Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn
The structure of the title compound, LuP5O14, comprises puckered eight-membered PO4 rings linked by the lutetium cations in a complex way, forming a three-dimensional framework. Each eight-membered phosphate ring shares a bridging tetrahedron with each of four adjacent tetrahedra, to form layers of PO4 tetrahedra. These layers are c/2 in thickness and parallel to the ab plane. Each Lu ion is contained in one such layer, forming bonds to six O atoms in that layer and also to one O atom belonging to a tetrahedron in each of the layers lying above and below it. The LuO8 polyhedra are isolated from one another, since they share no common atoms. The Lu ions lie on twofold axes (special position 4e) and the shortest Lu⋯Lu distance is 5.703 (1) Å.
Related literature
For related literature, see: Durif (1971); Hong (1974); Hong & Pierce (1974). For the classification of ultraphosphates, see: Bagieu-Beucher & Tranqui (1970).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Enraf–Nonius, 1994; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808013032/br2072sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013032/br2072Isup2.hkl
Single crystal of LuP5O14 was prepared by
method. At room temperature, 0.5 g of Lu2O3 were slowly added to 10 ml of phosphoric acid H3PO4 (85%). The mixture was then slowly heated to 673 K and kept at this temperature for seven days. colorless, crystals were separated from the excess phosphoric acid by washing the product in boiling water.The highest peak and the deepest hole are located 0.79Å and 0.54 Å, respectively, from Lu1 and Lu2.
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Enraf–Nonius, 1994; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Enraf–Nonius, 1994; Macíček & Yordanov, 1992)'; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).LuP5O14 | F(000) = 2064 |
Mr = 553.82 | Dx = 3.672 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7043 reflections |
a = 12.8128 (14) Å | θ = 2.3–30.0° |
b = 12.6821 (13) Å | µ = 10.74 mm−1 |
c = 12.3330 (13) Å | T = 298 K |
β = 91.295 (3)° | Prism, colorless |
V = 2003.5 (4) Å3 | 0.20 × 0.19 × 0.18 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | 2734 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 30.0°, θmin = 2.3° |
ω/2θ scans | h = −17→18 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −17→17 |
Tmin = 0.121, Tmax = 0.145 | l = −17→17 |
10422 measured reflections | 2 standard reflections every 150 reflections |
2912 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.028P)2 + 3.0307P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.050 | (Δ/σ)max = 0.003 |
S = 1.08 | Δρmax = 1.34 e Å−3 |
2912 reflections | Δρmin = −0.98 e Å−3 |
183 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00637 (11) |
LuP5O14 | V = 2003.5 (4) Å3 |
Mr = 553.82 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.8128 (14) Å | µ = 10.74 mm−1 |
b = 12.6821 (13) Å | T = 298 K |
c = 12.3330 (13) Å | 0.20 × 0.19 × 0.18 mm |
β = 91.295 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2734 reflections with I > 2σ(I) |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | Rint = 0.031 |
Tmin = 0.121, Tmax = 0.145 | 2 standard reflections every 150 reflections |
10422 measured reflections | intensity decay: 2% |
2912 independent reflections |
R[F2 > 2σ(F2)] = 0.019 | 183 parameters |
wR(F2) = 0.050 | 0 restraints |
S = 1.08 | Δρmax = 1.34 e Å−3 |
2912 reflections | Δρmin = −0.98 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Lu1 | 1.0000 | 1.019590 (11) | 0.7500 | 0.00946 (6) | |
Lu2 | 1.0000 | 0.469251 (11) | 0.7500 | 0.00947 (6) | |
P1 | 1.18263 (5) | 0.63687 (5) | 0.89095 (5) | 0.01020 (13) | |
P2 | 0.97504 (5) | 0.65029 (5) | 0.96672 (5) | 0.01037 (13) | |
P3 | 0.85012 (5) | 0.83192 (5) | 0.89783 (5) | 0.01042 (13) | |
P4 | 0.85469 (5) | 0.96507 (5) | 0.50182 (6) | 0.01080 (14) | |
P5 | 1.17542 (6) | 1.24856 (5) | 0.76032 (6) | 0.01017 (14) | |
O1 | 1.15332 (15) | 0.54741 (15) | 0.82204 (16) | 0.0131 (4) | |
O2 | 1.24259 (17) | 0.72754 (16) | 0.83475 (17) | 0.0131 (4) | |
O3 | 1.09081 (14) | 0.69824 (15) | 0.94396 (15) | 0.0120 (3) | |
O4 | 1.24970 (13) | 0.60463 (17) | 0.99342 (13) | 0.0121 (4) | |
O5 | 0.97503 (15) | 0.59905 (15) | 1.07328 (15) | 0.0137 (4) | |
O6 | 0.93961 (15) | 0.59620 (15) | 0.86627 (15) | 0.0132 (4) | |
O7 | 0.91291 (17) | 0.75979 (14) | 0.97911 (18) | 0.0114 (4) | |
O8 | 0.90954 (15) | 0.87184 (15) | 0.80717 (15) | 0.0132 (4) | |
O9 | 0.75333 (18) | 0.76371 (15) | 0.86473 (18) | 0.0128 (4) | |
O10 | 0.80606 (15) | 0.91824 (14) | 0.97493 (15) | 0.0123 (4) | |
O11 | 0.88893 (16) | 0.96091 (15) | 0.61582 (16) | 0.0139 (4) | |
O12 | 0.92416 (15) | 1.06579 (15) | 0.91286 (15) | 0.0135 (4) | |
O13 | 1.12590 (16) | 0.34943 (15) | 0.73083 (16) | 0.0142 (4) | |
O14 | 1.11367 (16) | 1.15411 (15) | 0.78473 (16) | 0.0147 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Lu1 | 0.00912 (9) | 0.00934 (9) | 0.00992 (9) | 0.000 | −0.00025 (6) | 0.000 |
Lu2 | 0.00918 (9) | 0.00909 (8) | 0.01011 (9) | 0.000 | −0.00038 (6) | 0.000 |
P1 | 0.0100 (3) | 0.0094 (3) | 0.0112 (3) | 0.0001 (2) | −0.0002 (2) | 0.0002 (2) |
P2 | 0.0100 (3) | 0.0099 (3) | 0.0112 (3) | 0.0004 (2) | 0.0001 (2) | 0.0002 (2) |
P3 | 0.0103 (3) | 0.0097 (3) | 0.0112 (3) | −0.0001 (2) | −0.0002 (2) | 0.0000 (2) |
P4 | 0.0108 (3) | 0.0097 (3) | 0.0119 (3) | −0.0006 (2) | −0.0003 (2) | 0.0001 (2) |
P5 | 0.0094 (3) | 0.0099 (3) | 0.0112 (3) | −0.0002 (2) | −0.0004 (3) | −0.0006 (2) |
O1 | 0.0125 (9) | 0.0125 (8) | 0.0143 (9) | −0.0011 (7) | 0.0008 (7) | −0.0012 (7) |
O2 | 0.0142 (10) | 0.0108 (8) | 0.0144 (9) | −0.0013 (7) | 0.0030 (7) | 0.0002 (7) |
O3 | 0.0099 (8) | 0.0113 (8) | 0.0149 (9) | 0.0002 (7) | 0.0013 (7) | −0.0004 (7) |
O4 | 0.0115 (10) | 0.0129 (9) | 0.0118 (9) | 0.0024 (6) | −0.0014 (7) | −0.0003 (6) |
O5 | 0.0148 (9) | 0.0127 (8) | 0.0135 (9) | 0.0004 (7) | −0.0001 (7) | 0.0015 (7) |
O6 | 0.0132 (9) | 0.0135 (8) | 0.0129 (9) | 0.0018 (7) | −0.0009 (7) | −0.0010 (7) |
O7 | 0.0107 (10) | 0.0119 (8) | 0.0116 (9) | 0.0017 (6) | −0.0008 (7) | −0.0007 (6) |
O8 | 0.0153 (9) | 0.0122 (8) | 0.0122 (8) | −0.0023 (7) | 0.0012 (7) | −0.0001 (7) |
O9 | 0.0119 (10) | 0.0136 (8) | 0.0129 (10) | −0.0016 (7) | −0.0012 (8) | 0.0000 (7) |
O10 | 0.0123 (9) | 0.0098 (8) | 0.0150 (9) | 0.0007 (7) | 0.0013 (7) | −0.0012 (7) |
O11 | 0.0150 (10) | 0.0142 (8) | 0.0125 (9) | −0.0020 (7) | −0.0014 (7) | 0.0002 (7) |
O12 | 0.0143 (9) | 0.0129 (8) | 0.0135 (9) | −0.0007 (7) | 0.0013 (7) | 0.0002 (7) |
O13 | 0.0148 (9) | 0.0137 (8) | 0.0142 (9) | 0.0028 (7) | −0.0001 (7) | 0.0002 (7) |
O14 | 0.0156 (9) | 0.0131 (8) | 0.0151 (9) | −0.0044 (7) | −0.0009 (7) | 0.0002 (7) |
Lu1—O14 | 2.2775 (19) | P2—O7 | 1.6097 (19) |
Lu1—O14i | 2.2775 (19) | P2—O3 | 1.633 (2) |
Lu1—O11 | 2.283 (2) | P3—O8 | 1.458 (2) |
Lu1—O11i | 2.283 (2) | P3—O9 | 1.559 (2) |
Lu1—O8 | 2.3213 (19) | P3—O10 | 1.5638 (19) |
Lu1—O8i | 2.3213 (19) | P3—O7 | 1.566 (2) |
Lu1—O12 | 2.3260 (19) | P4—O11 | 1.464 (2) |
Lu1—O12i | 2.3260 (19) | P4—O12iv | 1.481 (2) |
Lu2—O13i | 2.2326 (19) | P4—O4v | 1.6111 (19) |
Lu2—O13 | 2.2326 (19) | P4—O10iv | 1.637 (2) |
Lu2—O6 | 2.3016 (19) | P5—O13vi | 1.470 (2) |
Lu2—O6i | 2.3016 (19) | P5—O14 | 1.470 (2) |
Lu2—O1 | 2.356 (2) | P5—O2vii | 1.614 (2) |
Lu2—O1i | 2.356 (2) | P5—O9viii | 1.623 (2) |
Lu2—O5ii | 2.3604 (19) | O2—P5ix | 1.614 (2) |
Lu2—O5iii | 2.3604 (19) | O4—P4x | 1.6111 (19) |
P1—O1 | 1.462 (2) | O5—Lu2iii | 2.3604 (19) |
P1—O2 | 1.555 (2) | O9—P5xi | 1.623 (2) |
P1—O3 | 1.5659 (19) | O10—P4xii | 1.637 (2) |
P1—O4 | 1.5665 (18) | O12—P4xii | 1.481 (2) |
P2—O5 | 1.466 (2) | O13—P5xiii | 1.470 (2) |
P2—O6 | 1.479 (2) | ||
O14—Lu1—O14i | 82.98 (10) | O13—Lu2—O5iii | 76.40 (7) |
O14—Lu1—O11 | 140.00 (7) | O6—Lu2—O5iii | 73.85 (7) |
O14i—Lu1—O11 | 73.88 (7) | O6i—Lu2—O5iii | 142.33 (7) |
O14—Lu1—O11i | 73.88 (7) | O1—Lu2—O5iii | 73.25 (7) |
O14i—Lu1—O11i | 140.00 (7) | O1i—Lu2—O5iii | 126.65 (7) |
O11—Lu1—O11i | 141.95 (10) | O5ii—Lu2—O5iii | 136.94 (9) |
O14—Lu1—O8 | 150.35 (7) | O1—P1—O2 | 115.98 (12) |
O14i—Lu1—O8 | 109.89 (7) | O1—P1—O3 | 116.30 (11) |
O11—Lu1—O8 | 69.49 (7) | O2—P1—O3 | 101.66 (11) |
O11i—Lu1—O8 | 79.86 (7) | O1—P1—O4 | 113.30 (12) |
O14—Lu1—O8i | 109.89 (7) | O2—P1—O4 | 106.56 (12) |
O14i—Lu1—O8i | 150.35 (7) | O3—P1—O4 | 101.33 (10) |
O11—Lu1—O8i | 79.86 (7) | O5—P2—O6 | 122.63 (12) |
O11i—Lu1—O8i | 69.49 (7) | O5—P2—O7 | 106.70 (11) |
O8—Lu1—O8i | 72.36 (10) | O6—P2—O7 | 109.67 (11) |
O14—Lu1—O12 | 85.80 (7) | O5—P2—O3 | 109.73 (11) |
O14i—Lu1—O12 | 72.29 (7) | O6—P2—O3 | 106.95 (11) |
O11—Lu1—O12 | 116.25 (7) | O7—P2—O3 | 98.52 (11) |
O11i—Lu1—O12 | 73.85 (7) | O8—P3—O9 | 114.72 (12) |
O8—Lu1—O12 | 73.73 (7) | O8—P3—O10 | 115.17 (11) |
O8i—Lu1—O12 | 133.38 (7) | O9—P3—O10 | 104.58 (12) |
O14—Lu1—O12i | 72.29 (7) | O8—P3—O7 | 115.10 (12) |
O14i—Lu1—O12i | 85.80 (7) | O9—P3—O7 | 103.75 (11) |
O11—Lu1—O12i | 73.85 (7) | O10—P3—O7 | 101.94 (11) |
O11i—Lu1—O12i | 116.25 (7) | O11—P4—O12iv | 121.99 (12) |
O8—Lu1—O12i | 133.38 (7) | O11—P4—O4v | 105.88 (11) |
O8i—Lu1—O12i | 73.73 (7) | O12iv—P4—O4v | 108.80 (11) |
O12—Lu1—O12i | 150.82 (9) | O11—P4—O10iv | 109.37 (11) |
O13i—Lu2—O13 | 94.22 (10) | O12iv—P4—O10iv | 108.74 (11) |
O13i—Lu2—O6 | 98.99 (7) | O4v—P4—O10iv | 99.76 (11) |
O13—Lu2—O6 | 142.75 (7) | O13vi—P5—O14 | 121.90 (13) |
O13i—Lu2—O6i | 142.75 (7) | O13vi—P5—O2vii | 104.38 (11) |
O13—Lu2—O6i | 98.99 (7) | O14—P5—O2vii | 112.10 (11) |
O6—Lu2—O6i | 91.22 (10) | O13vi—P5—O9viii | 110.34 (11) |
O13i—Lu2—O1 | 147.63 (7) | O14—P5—O9viii | 104.96 (11) |
O13—Lu2—O1 | 74.22 (7) | O2vii—P5—O9viii | 101.37 (12) |
O6—Lu2—O1 | 76.11 (7) | P1—O1—Lu2 | 138.32 (12) |
O6i—Lu2—O1 | 69.60 (7) | P1—O2—P5ix | 141.48 (14) |
O13i—Lu2—O1i | 74.22 (7) | P1—O3—P2 | 125.49 (12) |
O13—Lu2—O1i | 147.63 (7) | P1—O4—P4x | 129.58 (12) |
O6—Lu2—O1i | 69.60 (7) | P2—O5—Lu2iii | 170.97 (13) |
O6i—Lu2—O1i | 76.11 (7) | P2—O6—Lu2 | 138.19 (12) |
O1—Lu2—O1i | 130.25 (10) | P3—O7—P2 | 133.72 (14) |
O13i—Lu2—O5ii | 76.40 (7) | P3—O8—Lu1 | 141.86 (12) |
O13—Lu2—O5ii | 74.67 (7) | P3—O9—P5xi | 138.16 (14) |
O6—Lu2—O5ii | 142.33 (7) | P3—O10—P4xii | 127.96 (13) |
O6i—Lu2—O5ii | 73.85 (7) | P4—O11—Lu1 | 148.50 (12) |
O1—Lu2—O5ii | 126.65 (7) | P4xii—O12—Lu1 | 147.46 (12) |
O1i—Lu2—O5ii | 73.25 (7) | P5xiii—O13—Lu2 | 151.04 (13) |
O13i—Lu2—O5iii | 74.67 (7) | P5—O14—Lu1 | 156.41 (13) |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x, −y+1, z−1/2; (iii) −x+2, −y+1, −z+2; (iv) x, −y+2, z−1/2; (v) x−1/2, −y+3/2, z−1/2; (vi) x, y+1, z; (vii) −x+5/2, y+1/2, −z+3/2; (viii) x+1/2, y+1/2, z; (ix) −x+5/2, y−1/2, −z+3/2; (x) x+1/2, −y+3/2, z+1/2; (xi) x−1/2, y−1/2, z; (xii) x, −y+2, z+1/2; (xiii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | LuP5O14 |
Mr | 553.82 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 12.8128 (14), 12.6821 (13), 12.3330 (13) |
β (°) | 91.295 (3) |
V (Å3) | 2003.5 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 10.74 |
Crystal size (mm) | 0.20 × 0.19 × 0.18 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.121, 0.145 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10422, 2912, 2734 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.050, 1.08 |
No. of reflections | 2912 |
No. of parameters | 183 |
Δρmax, Δρmin (e Å−3) | 1.34, −0.98 |
Computer programs: , CAD-4 EXPRESS (Duisenberg, 1992; Enraf–Nonius, 1994; Macíček & Yordanov, 1992)', XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).
Acknowledgements
This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.
References
Bagieu-Beucher, M. & Tranqui, D. (1970). Bull. Soc. Fr. Mineral. Cristallogr. 93, 505–508. CAS Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Durif, A. (1971). Bull. Soc. Fr. Mineral. Cristallogr. 94, 314–318. CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hong, H. Y.-P. (1974). Acta Cryst. B30, 468–474. CrossRef IUCr Journals Web of Science Google Scholar
Hong, H. Y.-P. & Pierce, J. W. (1974). Mater. Res. Bull. 9, 179–190. CrossRef CAS Web of Science Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of LuP5O14 is a type (II) rare-earth ultraphosphates as classified by Bagieu-Beucher & Tranqui (1970), since it crystallizes in the monoclinic system with space group C2/c. In this structure, the lutetium ion is surrounded by eight oxygen atoms that form distorted polyhedra. Each of the oxygen atoms in the LuO8 polyhedra are shared exclusively with PO4 tetrahedra to form a three-dimensional framework, which delimits interesting tunnels (Fig.1). The structure is built up from (PO4) tetrahedra (Fig.2) which are cross-linked by bridging O atoms, but these do not form helical ribbons, as in the NdP5O14 structure type (I) (Hong, 1974), and HoP5O14 structure type (III) (Durif, 1971). The anion is being constructed from a succession of eight-membred rings interconnected through the ternary tetrahedra in a complex way (Fig.3a). The members of an individual ring are shown with yellow color. Each ring shares a bridging tetrahedron with each of four adjacent tetrahedra to form layers of PO4 tetrahedra, as illustrated in Fig.3b. These layers are about c/2 in thickness and parallel to the a-b plane. Each Lu ion is contained in one such layer, forming bonds to six oxygen in that layer and also to one oxygen belonging to a tetrahedron in each of the layers lying above and bolow it. the LuO8 polyhedra are isolated from one another, since they share no common atoms. The shortest Lu-Lu distances are 5.703. The LuP5O14 ultraphosphate is isostructural with YbP5O14 (Hong & Pierce, 1974).