inorganic compounds
Lithium diaquamagnesium catena-borodiphosphate(V) monohydrate, LiMg(H2O)2[BP2O8]·H2O, at 173 K
aDepartment of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China
*Correspondence e-mail: yaxihuang@xmu.edu.cn
The 2O)2[BP2O8]·H2O consists of tubular structural units, built from tetrahedral ∞1{[BP2O8]3−} borophosphate ribbons and (LiO4)n helices running along [001], which are interconnected by MgO4(H2O)2 octahedra, forming a three-dimensional network structure with one-dimensional channels along [001] in which the water molecules are located. The water molecule in the channel is significantly displaced by up to 0.3 Å from the special position 6b (..2) to a half-occupied general position. Mg, B and one Li atom all lie on twofold axes. Of the two Li positions, one is at a special position 6b (..2), while the other is at a general position; both are only half-occupied.
of LiMg(HRelated literature
For NaMg(H2O)2[BP2O8]·H2O and KMg(H2O)2[BP2O8]·H2O, see: Kniep et al. (1997). For LiCu(H2O)2[BP2O8]·(H2O) and LiZn(H2O)2[BP2O8]·H2O, see: Boy & Kniep (2001a,b). For LiCd(H2O)2[BP2O8]·H2O, see: Ge et al. (2003).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1997-2004) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680801516X/br2074sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801516X/br2074Isup2.hkl
Transparent, colorless single crystals of the title compound were hydrothermally synthesized. A mixture of MgCl2.6H2O (0.5344 g), LiOH.H2O (5.042 g), H3BO3 (1.568 g) and 10 ml (85%) H3PO4 in an approximate molar ratio Mg:Li:B:P = 1:46:10:65, are dissolved in 5 ml distilled water while stirring. The resulting solution (pH = 1.5) was transferred into a Teflon-lined autoclave (internal volume 30 ml, degree of filling 67%) and held at 463 K for four days under autogenous pressure. Then the autoclave was cooled to room temperature by turning off the power. Products were filtered off, washed with distilled water and dried at room temperature. Crystals with hexagonal bipyramidal morphology were selected for single-crystal diffraction after checking under a polarizing microscope and identifying by X-ray powder diffraction.
The hydrogen atoms connected with O5 are located from the difference Fourier maps and fixed the positions and displacement parameters assigned as 0.05. The hydrogen positions for O6 are not determined due to the connecting water molecule in disorder mode. The occupancy of O6 was fixed to 0.5 in the last cycles of
because its refined value was close to 50%.Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell
CrysAlis CCD (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1997-2004) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Helical arrangements in the crystal structure of LiMg(H2O)2[BP2O8].H2O, Green tetrahedra: PO4, Orange tetrahedra: BO4, grey tetrahedra: Li2O4. | |
Fig. 2. The crystal structure of LiMg(H2O)2[BP2O8].H2O plotted in projection along [001] | |
Fig. 3. The coordination environment of the metal atoms in LiMg(H2O)2[BP2O8].H2O, with displacement ellipsoids drawn at the 50% probability level.(symmetry codes: (i) y, x, -1/3 - z; (ii) x-y, 1 - y, -z; (iii) x, 1 + x-y, -1/6 - z; (iv) 1 - x,1 - y,-1/2 + z; (v) -x + y, 1 - x, -2/3 + z; (vi) 1 + x-y, x, -1/6 + z; (vii) y, 1 - x + y, -5/6 + z; (viii) -x + y, y, -1/2 - z; (ix) 1 + x-y, 2 - y, -z) |
LiMg(H2O)2[BP2O8]·H2O | Dx = 2.364 Mg m−3 |
Mr = 286.05 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6522 | Cell parameters from 3404 reflections |
Hall symbol: P 65 2 (0 0 1) | θ = 2.8–32.6° |
a = 9.4139 (1) Å | µ = 0.67 mm−1 |
c = 15.7113 (3) Å | T = 173 K |
V = 1205.82 (3) Å3 | Hexagonal bipyramidal, colourless |
Z = 6 | 0.16 × 0.07 × 0.07 mm |
F(000) = 864 |
Oxford Diffraction CCD area-detector diffractometer | 1343 independent reflections |
Radiation source: fine-focus sealed tube | 1142 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
326 images,Δω=1°, Exp time: 40 s. scans | θmax = 32.6°, θmin = 2.8° |
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2005) | h = −7→14 |
Tmin = 0.900, Tmax = 0.954 | k = −13→14 |
3404 measured reflections | l = −22→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters not refined |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1343 reflections | Δρmax = 0.74 e Å−3 |
75 parameters | Δρmin = −0.55 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 410 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.1 (2) |
LiMg(H2O)2[BP2O8]·H2O | Z = 6 |
Mr = 286.05 | Mo Kα radiation |
Hexagonal, P6522 | µ = 0.67 mm−1 |
a = 9.4139 (1) Å | T = 173 K |
c = 15.7113 (3) Å | 0.16 × 0.07 × 0.07 mm |
V = 1205.82 (3) Å3 |
Oxford Diffraction CCD area-detector diffractometer | 1343 independent reflections |
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2005) | 1142 reflections with I > 2σ(I) |
Tmin = 0.900, Tmax = 0.954 | Rint = 0.033 |
3404 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters not refined |
wR(F2) = 0.092 | Δρmax = 0.74 e Å−3 |
S = 1.06 | Δρmin = −0.55 e Å−3 |
1343 reflections | Absolute structure: Flack (1983), 410 Friedel pairs |
75 parameters | Absolute structure parameter: −0.1 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.61413 (8) | 0.82894 (8) | 0.08573 (4) | 0.00616 (14) | |
Mg1 | 0.44657 (8) | 0.89313 (15) | 0.2500 | 0.0080 (3) | |
O1 | 0.8112 (2) | 0.7888 (2) | −0.06431 (11) | 0.0096 (4) | |
O2 | 0.7643 (2) | 1.1783 (2) | 0.01261 (10) | 0.0074 (4) | |
O3 | 0.4841 (2) | 0.8559 (2) | 0.12481 (11) | 0.0113 (4) | |
O4 | 0.6190 (3) | 0.6808 (2) | 0.11749 (11) | 0.0116 (4) | |
O5 | 0.1958 (3) | 0.7110 (3) | 0.21628 (13) | 0.0168 (5) | |
B1 | 0.8496 (2) | 1.1504 (2) | 0.0833 | 0.0082 (7) | |
O6 | 0.8943 (11) | 0.8068 (7) | 0.2666 (4) | 0.0528 (18)* | 0.50 |
Li1 | 0.2395 (13) | 0.7605 (13) | 0.0833 | 0.027 (3)* | 0.426 (18) |
Li2 | 0.893 (3) | 0.750 (3) | 0.3456 (13) | 0.027 (3)* | 0.287 (9) |
H1 | 0.1273 | 0.6655 | 0.2575 | 0.050* | |
H2 | 0.1925 | 0.6306 | 0.1868 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0073 (3) | 0.0063 (3) | 0.0050 (2) | 0.0035 (2) | 0.0006 (2) | −0.0002 (2) |
Mg1 | 0.0081 (4) | 0.0074 (6) | 0.0084 (5) | 0.0037 (3) | 0.0018 (4) | 0.000 |
O1 | 0.0103 (9) | 0.0091 (9) | 0.0108 (8) | 0.0060 (8) | −0.0029 (7) | −0.0014 (7) |
O2 | 0.0090 (9) | 0.0091 (9) | 0.0045 (7) | 0.0048 (8) | −0.0006 (6) | 0.0004 (6) |
O3 | 0.0124 (9) | 0.0166 (11) | 0.0067 (8) | 0.0087 (8) | 0.0006 (7) | −0.0030 (7) |
O4 | 0.0186 (10) | 0.0074 (9) | 0.0098 (7) | 0.0073 (8) | −0.0013 (8) | 0.0012 (7) |
O5 | 0.0132 (11) | 0.0124 (10) | 0.0160 (9) | −0.0002 (9) | 0.0040 (8) | −0.0044 (8) |
B1 | 0.0100 (14) | 0.0100 (14) | 0.0065 (15) | 0.0063 (16) | −0.0018 (13) | −0.0018 (13) |
P1—O3 | 1.501 (2) | B1—O1i | 1.461 (3) |
P1—O4 | 1.5033 (19) | B1—O2ix | 1.469 (3) |
P1—O1i | 1.558 (2) | B1—O2 | 1.469 (3) |
P1—O2ii | 1.5632 (17) | O6—O6iii | 0.549 (14) |
P1—Li2iii | 2.94 (2) | Li1—O3x | 2.113 (12) |
Mg1—O4i | 2.042 (2) | Li1—O5x | 2.135 (2) |
Mg1—O4iv | 2.042 (2) | Li1—O6vi | 2.35 (2) |
Mg1—O3v | 2.0590 (17) | Li1—O6iv | 2.35 (2) |
Mg1—O3 | 2.0590 (17) | Li1—Li2iv | 2.40 (3) |
Mg1—O5 | 2.179 (2) | Li2—O6iii | 1.82 (2) |
Mg1—O5v | 2.179 (2) | Li2—O4iii | 2.08 (2) |
Mg1—Li2vi | 3.07 (2) | Li2—O6vii | 2.08 (2) |
Mg1—Li2vii | 3.07 (2) | Li2—O5xi | 2.10 (2) |
Mg1—Li1viii | 3.128 (4) | Li2—Li2vii | 2.36 (4) |
Mg1—Li1 | 3.128 (4) | Li2—O6i | 2.48 (2) |
B1—O1ii | 1.461 (3) | Li2—O1xii | 2.65 (2) |
O3—P1—O4 | 115.28 (12) | Li2iii—O6—Li2vii | 116.4 (10) |
O3—P1—O1i | 111.30 (11) | Li2—O6—Li1xi | 75.9 (9) |
O4—P1—O1i | 105.63 (11) | Li2iii—O6—Li1xi | 69.1 (7) |
O3—P1—O2ii | 106.09 (10) | Li2vii—O6—Li1xi | 114.4 (7) |
O4—P1—O2ii | 111.75 (10) | Li2—O6—Li2xiii | 117.5 (12) |
O1i—P1—O2ii | 106.53 (10) | Li2iii—O6—Li2xiii | 64.5 (10) |
O3—P1—Li2iii | 134.1 (4) | Li2vii—O6—Li2xiii | 142.5 (11) |
O1i—P1—Li2iii | 63.9 (4) | Li1xi—O6—Li2xiii | 101.1 (6) |
O2ii—P1—Li2iii | 119.2 (4) | O3x—Li1—O3 | 109.7 (9) |
O4i—Mg1—O4iv | 95.33 (13) | O3x—Li1—O5x | 80.9 (3) |
O4i—Mg1—O3v | 91.45 (8) | O3—Li1—O5x | 97.7 (4) |
O4iv—Mg1—O3v | 99.96 (8) | O3x—Li1—O5 | 97.7 (4) |
O4i—Mg1—O3 | 99.96 (8) | O3—Li1—O5 | 80.9 (3) |
O4iv—Mg1—O3 | 91.45 (8) | O5x—Li1—O5 | 177.4 (11) |
O3v—Mg1—O3 | 163.06 (13) | O3x—Li1—O6vi | 125.3 (5) |
O4i—Mg1—O5 | 178.78 (8) | O3—Li1—O6vi | 124.4 (5) |
O4iv—Mg1—O5 | 85.31 (9) | O5x—Li1—O6vi | 98.0 (6) |
O3v—Mg1—O5 | 87.42 (8) | O5—Li1—O6vi | 84.6 (5) |
O3—Mg1—O5 | 81.04 (8) | O3x—Li1—O6iv | 124.4 (5) |
O4i—Mg1—O5v | 85.31 (9) | O3—Li1—O6iv | 125.3 (5) |
O4iv—Mg1—O5v | 178.78 (8) | O5x—Li1—O6iv | 84.6 (5) |
O3v—Mg1—O5v | 81.04 (8) | O5—Li1—O6iv | 98.0 (6) |
O3—Mg1—O5v | 87.42 (8) | O6vi—Li1—O6iv | 13.5 (4) |
O5—Mg1—O5v | 94.06 (13) | O6—Li2—O6iii | 10.0 (7) |
B1xiii—O1—P1xiii | 128.00 (16) | O6—Li2—O4iii | 121.6 (14) |
B1xiii—O1—Li2xii | 147.5 (5) | O6iii—Li2—O4iii | 112.3 (11) |
P1xiii—O1—Li2xii | 84.3 (5) | O6—Li2—O6vii | 92.9 (11) |
B1—O2—P1ii | 130.40 (17) | O6iii—Li2—O6vii | 102.9 (10) |
P1—O3—Mg1 | 130.05 (11) | O4iii—Li2—O6vii | 134.3 (10) |
P1—O3—Li1 | 127.6 (4) | O6—Li2—O5xi | 121.0 (13) |
Mg1—O3—Li1 | 97.1 (2) | O6iii—Li2—O5xi | 119.2 (11) |
P1—O4—Mg1xiii | 141.40 (12) | O4iii—Li2—O5xi | 86.5 (8) |
P1—O4—Li2iii | 109.2 (6) | O6vii—Li2—O5xi | 101.1 (9) |
Mg1xiii—O4—Li2iii | 96.3 (6) | O6—Li2—O6i | 102.1 (12) |
Li2vi—O5—Li1 | 69.3 (8) | O6iii—Li2—O6i | 112.0 (10) |
Li2vi—O5—Mg1 | 91.8 (6) | O4iii—Li2—O6i | 125.2 (9) |
Li1—O5—Mg1 | 92.95 (17) | O6vii—Li2—O6i | 9.6 (4) |
O1ii—B1—O1i | 102.5 (3) | O5xi—Li2—O6i | 98.5 (8) |
O1ii—B1—O2 | 112.10 (10) | O6—Li2—O1xii | 99.7 (11) |
O1i—B1—O2 | 114.14 (10) | O6iii—Li2—O1xii | 98.7 (9) |
O1ii—B1—O2ix | 114.14 (10) | O4iii—Li2—O1xii | 60.6 (6) |
O1i—B1—O2ix | 112.10 (10) | O6vii—Li2—O1xii | 86.7 (7) |
O2—B1—O2ix | 102.2 (3) | O5xi—Li2—O1xii | 137.7 (9) |
Li2—O6—Li2iii | 144.4 (15) | O6i—Li2—O1xii | 82.4 (6) |
Li2—O6—Li2vii | 84.1 (12) |
Symmetry codes: (i) y, −x+y+1, z+1/6; (ii) x−y+1, −y+2, −z; (iii) −x+y+1, y, −z+1/2; (iv) −x+1, −x+y+1, −z+1/3; (v) −x+y, y, −z+1/2; (vi) x−y, x, z−1/6; (vii) y, x, −z+2/3; (viii) −x+y, −x+1, z+1/3; (ix) −y+2, −x+2, −z+1/6; (x) −y+1, −x+1, −z+1/6; (xi) y, −x+y, z+1/6; (xii) −x+2, −x+y+1, −z+1/3; (xiii) x−y+1, x, z−1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O4v | 0.862 | 2.085 | 2.852 (3) | 147.93 |
O5—H2···O2xiv | 0.875 | 1.979 | 2.779 (3) | 151.43 |
O5—H2···O3x | 0.875 | 2.463 | 3.198 (3) | 141.96 |
Symmetry codes: (v) −x+y, y, −z+1/2; (x) −y+1, −x+1, −z+1/6; (xiv) y−1, −x+y, z+1/6. |
Experimental details
Crystal data | |
Chemical formula | LiMg(H2O)2[BP2O8]·H2O |
Mr | 286.05 |
Crystal system, space group | Hexagonal, P6522 |
Temperature (K) | 173 |
a, c (Å) | 9.4139 (1), 15.7113 (3) |
V (Å3) | 1205.82 (3) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.16 × 0.07 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction CCD area-detector diffractometer |
Absorption correction | Numerical (CrysAlis RED; Oxford Diffraction, 2005) |
Tmin, Tmax | 0.900, 0.954 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3404, 1343, 1142 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.758 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.092, 1.06 |
No. of reflections | 1343 |
No. of parameters | 75 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.74, −0.55 |
Absolute structure | Flack (1983), 410 Friedel pairs |
Absolute structure parameter | −0.1 (2) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1997-2004) and ATOMS (Dowty, 2004).
P1—O3 | 1.501 (2) | B1—O2iv | 1.469 (3) |
P1—O4 | 1.5033 (19) | Li1—O3v | 2.113 (12) |
P1—O1i | 1.558 (2) | Li1—O5v | 2.135 (2) |
P1—O2ii | 1.5632 (17) | Li1—O6vi | 2.35 (2) |
Mg1—O4i | 2.042 (2) | Li2—O6vii | 1.82 (2) |
Mg1—O3iii | 2.0590 (17) | Li2—O4vii | 2.08 (2) |
Mg1—O5 | 2.179 (2) | Li2—O6viii | 2.08 (2) |
B1—O1ii | 1.461 (3) | Li2—O5ix | 2.10 (2) |
B1x—O1—P1x | 128.00 (16) | P1—O3—Mg1 | 130.05 (11) |
B1—O2—P1ii | 130.40 (17) |
Symmetry codes: (i) y, −x+y+1, z+1/6; (ii) x−y+1, −y+2, −z; (iii) −x+y, y, −z+1/2; (iv) −y+2, −x+2, −z+1/6; (v) −y+1, −x+1, −z+1/6; (vi) x−y, x, z−1/6; (vii) −x+y+1, y, −z+1/2; (viii) y, x, −z+2/3; (ix) y, −x+y, z+1/6; (x) x−y+1, x, z−1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O4iii | 0.862 | 2.085 | 2.852 (3) | 147.93 |
O5—H2···O2xi | 0.875 | 1.979 | 2.779 (3) | 151.43 |
O5—H2···O3v | 0.875 | 2.463 | 3.198 (3) | 141.96 |
Symmetry codes: (iii) −x+y, y, −z+1/2; (v) −y+1, −x+1, −z+1/6; (xi) y−1, −x+y, z+1/6. |
Acknowledgements
This project was supported by the National Natural Science Foundation of China (No. 40472027).
References
Boy, I. & Kniep, R. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 7–8. CAS Google Scholar
Boy, I. & Kniep, R. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 9–10. CAS Google Scholar
Brandenburg, K. (1997–2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dowty, E. (2004). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Ewald, B., Huang, Y.-X., Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517–1540. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ge, M.-H., Mi, J.-X., Huang, Y.-X., Zhao, J. T. & Kniep, R. (2003). Z. Kristallogr. New Cryst. Struct. 218, 273–274. CAS Google Scholar
Kniep, R., Will, H. G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. 36, 1013–1014. CrossRef CAS Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last decade, much attention has been paid to the large family of borophosphates with the general formula AM(H2O)2[BP2O8].yH2O (AI=Li, Na, K, NH4+; MII=Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd)(where y = 0.5–1) due to their chiral structure property and potential applications for catalysts (Kniep et al., 1997; Ewald et al., 2007). Many combinations between monovalent A cations and divalent M cations are available. At the M site, most of the known compounds in this family apply transition metal ions, while only two magnesium components, NaMg(H2O)2[BP2O8].H2O as well as KMg(H2O)2[BP2O8].H2O, are listed for the inclusion of alkaline-earth metals (Kniep et al., 1997). Whereas at the A site, up to date, only three Li-based borophosphates are known, e.g. LiCu(H2O)2[BP2O8].(H2O) (Boy & Kniep, 2001a), LiZn(H2O)2[BP2O8].H2O (Boy & Kniep, 2001b) and LiCd(H2O)2[BP2O8].H2O (Ge et al., 2003). Therefore herein we report on a new member of this family with the combination of Li and Mg, LiMg(H2O)2[BP2O8].H2O.
The crystal structure of the title compound contains infinite one-dimensional helical borophosphate ribbons ∞1{[BP2O8]3-}, arranged around 65 screw axes, which are built up from four-membered rings of corner-sharing PO4 and BO4 tetrahedra (Fig. 1 & 2). There are two partially occupied Li positions. Li1, located at the outside of ribbons (Fig. 2), is fixed by an irregular arrangement of five oxygen atoms from adjacent phosphate groups (O3) and water molecules (O5, O6). Li2 is tetrahedrally coordinated by four oxygen atoms that originated from phosphate groups (O4) and two water molecules (O5, O6)(Fig. 3). The resulting distorted tetrahedra, (Li2O4)n, located at the free thread of the borophosphate ribbons, are also wound around 65 screw axes to form helices via corner-sharing oxygen atoms which further connect the above infinite one-dimensional borophosphate ribbons by sharing common oxygen corners to develop into a tubular structure where water molecules (O6) with a disorder mode reside in. The magnesium site is octahedrally coordinated by four oxygen atoms from phosphate tetrahedra (O3, O4) and two water molecules (O5) which are located between the adjacent tubes and connect the neighbouring tubes to form a three-dimensional framework.