metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,5′-Di­carb­oxy­bi­phenyl-2,2′-di­carboxyl­ato-κ2O2,O2′)bis­­(1,10-phenanthroline-κ2N,N′)cobalt(II) dihydrate

aCollege of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China, and bChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun 130022, People's Republic of China
*Correspondence e-mail: rzchenchem@yahoo.cn

(Received 8 April 2008; accepted 14 April 2008; online 3 May 2008)

In the title compound, [Co(C16H8O8)(C12H8N2)2]·2H2O, the Co atom located on a twofold rotation axis. It is six-coordinated by two O atoms from one 5,5′-dicarboxy­biphenyl-2,2′-dicarboxyl­ate anion and four N atoms from two 1,10-phenanthroline mol­ecules in a distorted octa­hedral environment. The crystal packing is stabilized by O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Zhu, H.-Z. & Meng, Q.-J. (2006). Inorg. Chem. 45, 2972-2978.]); Che et al. (2006[Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286-m288.]); Lehn (1990[Lehn, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304-1305.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H8O8)(C12H8N2)2]·2H2O

  • Mr = 783.59

  • Monoclinic, C 2/c

  • a = 16.9272 (14) Å

  • b = 9.4514 (8) Å

  • c = 22.0458 (19) Å

  • β = 96.056 (1)°

  • V = 3507.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 (2) K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.880

  • 9540 measured reflections

  • 3447 independent reflections

  • 2705 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.111

  • S = 1.05

  • 3447 reflections

  • 255 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected bond lengths (Å)

N1—Co1 2.121 (2)
N2—Co1 2.155 (2)
O1—Co1 2.0865 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2 0.890 (10) 1.929 (11) 2.811 (3) 171 (3)
O4—H4⋯O2i 0.82 1.74 2.535 (2) 163
O1W—H1B⋯O3ii 0.889 (10) 2.177 (19) 2.934 (3) 143 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic polycarboxylate ligands have been extensively employed in the preparation of metal-organic coordination complexes due to their ability to form networks and due to their interesting properties (Lehn, 1990; Che et al., 2006). We selected biphenyl-2,5,2',5'-tetracarboxylic acid (H4BPTC) as a bridging ligand, 1,10-phenanthroline as a neutral ligand, and CoII as a metal center, in order to generate a new compound, [Co(H2BPTC)(Phen)2].2H2O, (I), which is reported here.

In compound (I), each CoII atom is six-coordinated by two O atoms from one H2BPTC anion and four N atoms from two 1,10-phenanthroline molecules in a distorted octahedral environment (Fig. 1). The bond lengths are all within the normal ranges (Zang et al., 2006). The crystal packing is stabilized by O—H···O hydrogen bonds between carboxylate groups and water molecules.

Related literature top

For related literature, see: Zang et al. (2006); Che et al. (2006); Lehn (1990).

Experimental top

A mixture of CoCl2.2H2O (0.1 mmol), biphenyl-2,5,2',5'-tetracarboxylic acid (0.2 mmol), 1,10-phenanthroline (0.2 mmol) and H2O(15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 298 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which the mixture was cooled to 298 K. Then, pink crystals of were obtained.

Refinement top

The water H-atoms were located from a difference Fourier map, and were refined with distance restraints of O–H = 0.90 Å and Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, y, 0.5 - z.
(5,5'-Dicarboxybiphenyl-2,2'-dicarboxylato-κ2O2,O2')bis(1,10- phenanthroline-κ2N,N')cobalt(II) dihydrate top
Crystal data top
[Co(C16H8O8)(C12H8N2)2]·2H2OF(000) = 1612
Mr = 783.59Dx = 1.484 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3447 reflections
a = 16.9272 (14) Åθ = 2.0–26.0°
b = 9.4514 (8) ŵ = 0.56 mm1
c = 22.0458 (19) ÅT = 293 K
β = 96.056 (1)°Block, pink
V = 3507.3 (5) Å30.28 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3447 independent reflections
Radiation source: fine-focus sealed tube2705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2020
Tmin = 0.852, Tmax = 0.880k = 1110
9540 measured reflectionsl = 2722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.7022P]
where P = (Fo2 + 2Fc2)/3
3447 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Co(C16H8O8)(C12H8N2)2]·2H2OV = 3507.3 (5) Å3
Mr = 783.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.9272 (14) ŵ = 0.56 mm1
b = 9.4514 (8) ÅT = 293 K
c = 22.0458 (19) Å0.28 × 0.25 × 0.23 mm
β = 96.056 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3447 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2705 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.880Rint = 0.039
9540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
3447 reflectionsΔρmin = 0.21 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02180 (12)0.3926 (2)0.17029 (10)0.0195 (5)
C20.01759 (12)0.4503 (2)0.21744 (10)0.0176 (5)
C30.08951 (13)0.5192 (2)0.20193 (10)0.0210 (5)
H30.11700.55610.23270.025*
C40.12130 (13)0.5340 (3)0.14147 (11)0.0240 (5)
C50.07984 (13)0.4819 (3)0.09534 (11)0.0281 (6)
H50.09990.49350.05470.034*
C60.00843 (13)0.4127 (3)0.11002 (11)0.0265 (6)
H60.01970.37910.07900.032*
C70.09258 (13)0.2983 (2)0.18419 (11)0.0227 (5)
C80.19930 (14)0.6078 (3)0.12529 (11)0.0305 (6)
C90.12655 (16)0.1382 (3)0.36037 (13)0.0419 (7)
H90.14620.20700.33580.050*
C100.16476 (18)0.1183 (4)0.41931 (15)0.0551 (9)
H100.20810.17400.43350.066*
C110.13745 (19)0.0158 (4)0.45565 (15)0.0579 (10)
H110.16320.00080.49440.069*
C120.07085 (19)0.0637 (3)0.43443 (14)0.0463 (8)
C130.03635 (17)0.0368 (3)0.37519 (13)0.0369 (7)
C140.03385 (18)0.1126 (3)0.35129 (13)0.0393 (7)
C150.0675 (2)0.2122 (3)0.38854 (15)0.0500 (8)
C160.0295 (3)0.2393 (4)0.44813 (17)0.0651 (11)
H160.05080.30720.47230.078*
C170.0364 (2)0.1692 (4)0.47042 (16)0.0637 (10)
H170.05980.18930.50950.076*
C180.1378 (2)0.2783 (3)0.36436 (17)0.0612 (10)
H180.16190.34550.38710.073*
C190.1707 (2)0.2438 (3)0.30749 (17)0.0573 (10)
H190.21840.28490.29150.069*
C200.13227 (18)0.1458 (3)0.27306 (15)0.0472 (8)
H200.15510.12390.23390.057*
N10.06377 (12)0.0635 (2)0.33797 (10)0.0342 (5)
N20.06511 (14)0.0830 (2)0.29367 (11)0.0369 (6)
O10.09051 (9)0.20921 (16)0.22641 (7)0.0257 (4)
O20.14953 (10)0.3116 (2)0.15270 (8)0.0443 (5)
O1W0.16597 (12)0.4484 (2)0.04153 (9)0.0432 (5)
O30.22748 (11)0.6294 (2)0.07347 (8)0.0507 (6)
O40.23287 (10)0.6461 (2)0.17334 (8)0.0475 (6)
H40.27510.68580.16260.071*
Co10.00000.07672 (5)0.25000.02804 (17)
H1A0.1647 (16)0.398 (3)0.0755 (8)0.042*
H1B0.1857 (15)0.388 (2)0.0163 (10)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0143 (10)0.0227 (13)0.0218 (12)0.0028 (9)0.0030 (9)0.0004 (10)
C20.0153 (11)0.0177 (12)0.0199 (12)0.0020 (9)0.0029 (9)0.0005 (9)
C30.0181 (11)0.0248 (13)0.0203 (13)0.0026 (9)0.0033 (10)0.0037 (10)
C40.0193 (12)0.0288 (14)0.0238 (13)0.0063 (10)0.0016 (10)0.0001 (10)
C50.0236 (12)0.0418 (16)0.0180 (13)0.0087 (11)0.0021 (10)0.0010 (11)
C60.0245 (12)0.0360 (15)0.0196 (13)0.0085 (11)0.0058 (10)0.0030 (11)
C70.0198 (12)0.0260 (13)0.0222 (13)0.0052 (10)0.0019 (10)0.0028 (10)
C80.0227 (12)0.0443 (17)0.0242 (14)0.0110 (11)0.0020 (11)0.0005 (12)
C90.0319 (15)0.0500 (18)0.0444 (18)0.0084 (14)0.0072 (13)0.0125 (14)
C100.0368 (16)0.079 (3)0.048 (2)0.0138 (16)0.0001 (15)0.0097 (18)
C110.051 (2)0.081 (3)0.0416 (19)0.0279 (19)0.0070 (16)0.0244 (18)
C120.0533 (19)0.0457 (19)0.0425 (18)0.0193 (15)0.0168 (15)0.0117 (15)
C130.0483 (17)0.0286 (15)0.0371 (17)0.0160 (13)0.0195 (14)0.0069 (12)
C140.0587 (19)0.0238 (15)0.0404 (17)0.0087 (13)0.0283 (15)0.0025 (12)
C150.079 (2)0.0265 (16)0.051 (2)0.0043 (16)0.0385 (18)0.0022 (14)
C160.106 (3)0.038 (2)0.060 (2)0.007 (2)0.048 (2)0.0151 (17)
C170.092 (3)0.055 (2)0.049 (2)0.026 (2)0.029 (2)0.0256 (18)
C180.094 (3)0.0323 (18)0.067 (3)0.0128 (18)0.056 (2)0.0067 (16)
C190.074 (2)0.0376 (18)0.068 (2)0.0217 (17)0.043 (2)0.0196 (17)
C200.060 (2)0.0317 (16)0.054 (2)0.0110 (15)0.0279 (16)0.0119 (14)
N10.0352 (12)0.0323 (13)0.0367 (13)0.0091 (10)0.0119 (10)0.0061 (10)
N20.0485 (14)0.0236 (12)0.0426 (14)0.0036 (11)0.0238 (12)0.0048 (10)
O10.0231 (9)0.0249 (9)0.0294 (10)0.0044 (7)0.0038 (7)0.0069 (8)
O20.0297 (10)0.0664 (14)0.0402 (12)0.0286 (9)0.0196 (9)0.0277 (10)
O1W0.0472 (12)0.0570 (14)0.0262 (11)0.0127 (10)0.0079 (9)0.0085 (9)
O30.0378 (11)0.0889 (17)0.0242 (11)0.0349 (11)0.0027 (9)0.0028 (10)
O40.0356 (11)0.0810 (15)0.0264 (10)0.0384 (10)0.0057 (9)0.0074 (10)
Co10.0308 (3)0.0225 (3)0.0323 (3)0.0000.0103 (2)0.000
Geometric parameters (Å, º) top
C1—C61.385 (3)C13—N11.367 (3)
C1—C21.403 (3)C13—C141.439 (4)
C1—C71.499 (3)C14—N21.353 (4)
C2—C31.391 (3)C14—C151.408 (4)
C2—C2i1.495 (4)C15—C181.399 (5)
C3—C41.391 (3)C15—C161.424 (5)
C3—H30.9300C16—C171.345 (5)
C4—C51.385 (3)C16—H160.9300
C4—C81.503 (3)C17—H170.9300
C5—C61.382 (3)C18—C191.357 (5)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.401 (4)
C7—O21.252 (3)C19—H190.9300
C7—O11.258 (3)C20—N21.320 (4)
C8—O31.208 (3)C20—H200.9300
C8—O41.305 (3)N1—Co12.121 (2)
C9—N11.327 (3)N2—Co12.155 (2)
C9—C101.402 (4)O1—Co12.0865 (16)
C9—H90.9300O1W—H1A0.890 (10)
C10—C111.368 (4)O1W—H1B0.889 (10)
C10—H100.9300O4—H40.8200
C11—C121.394 (5)Co1—O1i2.0865 (16)
C11—H110.9300Co1—N1i2.121 (2)
C12—C131.396 (4)Co1—N2i2.155 (2)
C12—C171.437 (4)
C6—C1—C2120.1 (2)C18—C15—C14117.2 (3)
C6—C1—C7118.9 (2)C18—C15—C16123.7 (3)
C2—C1—C7120.8 (2)C14—C15—C16119.2 (3)
C3—C2—C1118.1 (2)C17—C16—C15121.7 (3)
C3—C2—C2i119.1 (2)C17—C16—H16119.2
C1—C2—C2i122.6 (2)C15—C16—H16119.2
C2—C3—C4121.5 (2)C16—C17—C12120.7 (3)
C2—C3—H3119.2C16—C17—H17119.7
C4—C3—H3119.2C12—C17—H17119.7
C5—C4—C3119.5 (2)C19—C18—C15119.6 (3)
C5—C4—C8119.4 (2)C19—C18—H18120.2
C3—C4—C8121.0 (2)C15—C18—H18120.2
C6—C5—C4119.6 (2)C18—C19—C20119.4 (3)
C6—C5—H5120.2C18—C19—H19120.3
C4—C5—H5120.2C20—C19—H19120.3
C5—C6—C1121.0 (2)N2—C20—C19122.9 (3)
C5—C6—H6119.5N2—C20—H20118.5
C1—C6—H6119.5C19—C20—H20118.5
O2—C7—O1124.1 (2)C9—N1—C13117.1 (2)
O2—C7—C1118.2 (2)C9—N1—Co1128.26 (19)
O1—C7—C1117.7 (2)C13—N1—Co1114.67 (19)
O3—C8—O4124.0 (2)C20—N2—C14117.9 (3)
O3—C8—C4123.5 (2)C20—N2—Co1128.6 (2)
O4—C8—C4112.5 (2)C14—N2—Co1113.37 (18)
N1—C9—C10123.2 (3)C7—O1—Co1131.64 (15)
N1—C9—H9118.4H1A—O1W—H1B103 (3)
C10—C9—H9118.4C8—O4—H4109.5
C11—C10—C9119.1 (3)O1—Co1—O1i106.24 (9)
C11—C10—H10120.5O1—Co1—N1i97.10 (7)
C9—C10—H10120.5O1i—Co1—N1i86.97 (7)
C10—C11—C12119.8 (3)O1—Co1—N186.97 (7)
C10—C11—H11120.1O1i—Co1—N197.10 (7)
C12—C11—H11120.1N1i—Co1—N1173.25 (12)
C11—C12—C13117.4 (3)O1—Co1—N2162.80 (8)
C11—C12—C17123.4 (3)O1i—Co1—N283.42 (7)
C13—C12—C17119.2 (3)N1i—Co1—N297.60 (9)
N1—C13—C12123.5 (3)N1—Co1—N277.60 (9)
N1—C13—C14116.4 (3)O1—Co1—N2i83.42 (7)
C12—C13—C14120.0 (3)O1i—Co1—N2i162.80 (8)
N2—C14—C15122.9 (3)N1i—Co1—N2i77.60 (9)
N2—C14—C13117.8 (2)N1—Co1—N2i97.60 (8)
C15—C14—C13119.2 (3)N2—Co1—N2i91.07 (11)
C6—C1—C2—C34.1 (3)C14—C15—C18—C190.7 (4)
C7—C1—C2—C3170.5 (2)C16—C15—C18—C19178.7 (3)
C6—C1—C2—C2i171.09 (18)C15—C18—C19—C202.1 (5)
C7—C1—C2—C2i14.4 (3)C18—C19—C20—N20.8 (5)
C1—C2—C3—C41.4 (3)C10—C9—N1—C130.0 (4)
C2i—C2—C3—C4173.90 (19)C10—C9—N1—Co1178.9 (2)
C2—C3—C4—C51.4 (4)C12—C13—N1—C90.0 (4)
C2—C3—C4—C8179.6 (2)C14—C13—N1—C9177.3 (2)
C3—C4—C5—C61.7 (4)C12—C13—N1—Co1179.0 (2)
C8—C4—C5—C6179.4 (2)C14—C13—N1—Co13.6 (3)
C4—C5—C6—C11.0 (4)C19—C20—N2—C141.9 (4)
C2—C1—C6—C53.9 (4)C19—C20—N2—Co1176.8 (2)
C7—C1—C6—C5170.7 (2)C15—C14—N2—C203.4 (4)
C6—C1—C7—O245.0 (3)C13—C14—N2—C20175.8 (2)
C2—C1—C7—O2140.4 (2)C15—C14—N2—Co1179.0 (2)
C6—C1—C7—O1134.1 (2)C13—C14—N2—Co10.1 (3)
C2—C1—C7—O140.5 (3)O2—C7—O1—Co1137.2 (2)
C5—C4—C8—O32.7 (4)C1—C7—O1—Co141.8 (3)
C3—C4—C8—O3176.3 (3)C7—O1—Co1—O1i63.12 (19)
C5—C4—C8—O4177.5 (2)C7—O1—Co1—N1i25.8 (2)
C3—C4—C8—O43.6 (3)C7—O1—Co1—N1159.6 (2)
N1—C9—C10—C111.1 (5)C7—O1—Co1—N2174.4 (2)
C9—C10—C11—C122.1 (5)C7—O1—Co1—N2i102.3 (2)
C10—C11—C12—C132.0 (4)C9—N1—Co1—O19.2 (2)
C10—C11—C12—C17177.4 (3)C13—N1—Co1—O1169.69 (17)
C11—C12—C13—N10.9 (4)C9—N1—Co1—O1i96.8 (2)
C17—C12—C13—N1178.5 (3)C13—N1—Co1—O1i84.31 (17)
C11—C12—C13—C14178.3 (2)C9—N1—Co1—N2178.4 (2)
C17—C12—C13—C141.2 (4)C13—N1—Co1—N22.68 (17)
N1—C13—C14—N22.5 (3)C9—N1—Co1—N2i92.2 (2)
C12—C13—C14—N2180.0 (2)C13—N1—Co1—N2i86.74 (17)
N1—C13—C14—C15176.7 (2)C20—N2—Co1—O1159.6 (2)
C12—C13—C14—C150.8 (4)C14—N2—Co1—O125.3 (3)
N2—C14—C15—C182.1 (4)C20—N2—Co1—O1i75.0 (2)
C13—C14—C15—C18177.0 (2)C14—N2—Co1—O1i100.13 (17)
N2—C14—C15—C16178.4 (3)C20—N2—Co1—N1i11.1 (2)
C13—C14—C15—C162.4 (4)C14—N2—Co1—N1i173.83 (17)
C18—C15—C16—C17177.4 (3)C20—N2—Co1—N1173.8 (2)
C14—C15—C16—C172.1 (5)C14—N2—Co1—N11.35 (17)
C15—C16—C17—C120.0 (5)C20—N2—Co1—N2i88.7 (2)
C11—C12—C17—C16177.8 (3)C14—N2—Co1—N2i96.20 (19)
C13—C12—C17—C161.6 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.89 (1)1.93 (1)2.811 (3)171 (3)
O4—H4···O2ii0.821.742.535 (2)163
O1W—H1B···O3iii0.89 (1)2.18 (2)2.934 (3)143 (2)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C16H8O8)(C12H8N2)2]·2H2O
Mr783.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.9272 (14), 9.4514 (8), 22.0458 (19)
β (°) 96.056 (1)
V3)3507.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.852, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
9540, 3447, 2705
Rint0.039
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.111, 1.05
No. of reflections3447
No. of parameters255
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Co12.121 (2)Co1—O1i2.0865 (16)
N2—Co12.155 (2)Co1—N1i2.121 (2)
O1—Co12.0865 (16)Co1—N2i2.155 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.890 (10)1.929 (11)2.811 (3)171 (3)
O4—H4···O2ii0.821.742.535 (2)162.6
O1W—H1B···O3iii0.889 (10)2.177 (19)2.934 (3)143 (2)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Changchun Normal University for supporting this work.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286–m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehn, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304–1305.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Zhu, H.-Z. & Meng, Q.-J. (2006). Inorg. Chem. 45, 2972–2978.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds