metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,5-bis­­(1H-indol-3-ylmethyl­ene)thio­carbazonato-κ2N,S]nickel(II) di­methyl sulfoxide disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 April 2008; accepted 25 April 2008; online 3 May 2008)

The Ni atom in the crystal structure of the centrosymmetric title compound, [Ni(C19H15N6S)2]·2C2H6OS, is N,S-chelated by the deprotonated Schiff bases in a square-planar geometry. The –CH=N—N=C(S)—NH—N=CH– frament is planar. The two indolyl –NH (donor) sites inter­act with dimethyl sulfoxide mol­ecules to furnish a layer motif.

Related literature

For the structure of the unsolvated nickel derivative of 1H-indole-3-carboxaldehyde thio­semicarbazone, see: Rizal et al. (2008[Rizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64. submitted (sg2241).]). The ligand is known to be a sensitive complexing agent, see: Ghosh et al. (1999[Ghosh, S., Chaudhury, S. P. & Ds, H. R. (1999). J. Ind. Chem. Soc. 76, 463-464.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H15N6S)2]·2C2H6OS

  • Mr = 933.83

  • Monoclinic, C 2/c

  • a = 19.0340 (5) Å

  • b = 9.1982 (3) Å

  • c = 25.1374 (7) Å

  • β = 95.672 (2)°

  • V = 4379.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100 (2) K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.980

  • 27119 measured reflections

  • 5030 independent reflections

  • 3201 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.03

  • 5030 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N5 1.906 (3)
Ni1—S1 2.1748 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1 0.88 2.10 2.890 (4) 148
N6—H6n⋯O1i 0.88 2.03 2.855 (4) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The preceding study reports the nickel derivative of 1H-indole-3-carboxaldehyde thiosemicarbazone (Rizal et al., 2008). With bis(1H-indole-3-carboxaldehyde thiocarbazone) in place of the thiosemicarbazone, the resulting nickel derivative also has the N,S-chelated metal center in a square planar coordination geometry. The compound crystallizes from DMSO as a disolvate (Fig. 1). The oxygen atom of the solvent molecule is a hydrogen bond acceptor to the indolyl amino group of two mononuclear molecules; such a hydrogen bonding scheme gives rise to a layer motif.

Related literature top

For the structure of the unsolvated nickel derivative of 1H-indole-3-carboxaldehyde thiosemicarbazone, see: Rizal et al. (2008). The ligand is known to be a sensitive complexing agent, see: Ghosh et al. (1999).

Experimental top

The Schiff base was synthesized as according to a literature procedure (Ghosh et al., 1999). The Schiff base (2 g, 5.5 mmol) and nickel acetate (0.7 g, 2.8 mmol) were heated in ethanol (50 ml) for 5 h. The brown product was recrystallized from DMSO to give red crystals..

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The nitrogen-bound H-atoms were similarly treated [N–H 0.88 Å].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ni(C19H15N6S)2.2DMSO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion. Unlabeled atoms are related to the labeled ones by this symmetry element.
Bis[1,5-bis(1H-indol-3-ylmethylene)thiocarbazonato- κ2N,S]nickel(II) dimethyl sulfoxide disolvate top
Crystal data top
[Ni(C19H15N6S)2]·2C2H6OSF(000) = 1944
Mr = 933.83Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2255 reflections
a = 19.0340 (5) Åθ = 2.5–23.1°
b = 9.1982 (3) ŵ = 0.69 mm1
c = 25.1374 (7) ÅT = 100 K
β = 95.672 (2)°Needle, red
V = 4379.5 (2) Å30.30 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5030 independent reflections
Radiation source: fine-focus sealed tube3201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.821, Tmax = 0.980k = 119
27119 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
5030 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(C19H15N6S)2]·2C2H6OSV = 4379.5 (2) Å3
Mr = 933.83Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.0340 (5) ŵ = 0.69 mm1
b = 9.1982 (3) ÅT = 100 K
c = 25.1374 (7) Å0.30 × 0.03 × 0.03 mm
β = 95.672 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5030 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3201 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.980Rint = 0.092
27119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
5030 reflectionsΔρmin = 0.53 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.75000.75000.50000.02112 (17)
S10.71406 (4)0.69712 (10)0.41745 (3)0.0248 (2)
S20.54373 (5)0.32873 (12)0.03925 (4)0.0426 (3)
N10.67553 (16)0.4672 (4)0.14187 (11)0.0407 (8)
H1N0.67490.43840.10840.049*
N20.73446 (14)0.5251 (3)0.32226 (10)0.0275 (6)
N30.77036 (14)0.4729 (3)0.36844 (10)0.0278 (6)
H3N0.79670.39450.36740.033*
N40.80017 (13)0.4836 (3)0.45745 (9)0.0228 (6)
N50.79004 (13)0.5599 (3)0.50425 (9)0.0219 (6)
N60.87026 (13)0.1142 (3)0.54254 (10)0.0256 (6)
H6N0.87700.03050.52690.031*
O10.61523 (12)0.3930 (3)0.03531 (9)0.0361 (6)
C10.71111 (19)0.3994 (5)0.18458 (13)0.0366 (9)
H10.73800.31280.18300.044*
C20.64128 (19)0.5856 (4)0.15846 (13)0.0347 (9)
C30.59816 (19)0.6863 (5)0.13031 (15)0.0410 (10)
H30.58910.68010.09250.049*
C40.5688 (2)0.7948 (5)0.15795 (16)0.0437 (10)
H40.53900.86420.13900.052*
C50.5817 (2)0.8061 (5)0.21364 (16)0.0445 (10)
H50.56060.88270.23180.053*
C60.62496 (18)0.7069 (4)0.24255 (14)0.0344 (9)
H60.63320.71420.28040.041*
C70.65623 (18)0.5962 (4)0.21512 (12)0.0314 (8)
C80.70192 (18)0.4760 (4)0.23012 (12)0.0321 (8)
C90.73595 (18)0.4385 (4)0.28191 (12)0.0307 (8)
H90.76000.34820.28660.037*
C100.76516 (16)0.5425 (4)0.41603 (12)0.0237 (7)
C110.80984 (15)0.4880 (4)0.54786 (12)0.0239 (7)
H110.80510.53880.58020.029*
C120.83747 (16)0.3449 (4)0.55418 (12)0.0237 (7)
C130.84099 (16)0.2324 (4)0.51784 (12)0.0235 (7)
H130.82500.23800.48090.028*
C140.88816 (16)0.1434 (4)0.59618 (13)0.0274 (8)
C150.92233 (17)0.0566 (4)0.63616 (13)0.0346 (9)
H150.93610.04030.62930.042*
C160.93510 (19)0.1182 (5)0.68610 (14)0.0410 (10)
H160.95890.06260.71420.049*
C170.91418 (19)0.2594 (5)0.69662 (14)0.0400 (9)
H170.92340.29750.73170.048*
C180.88050 (17)0.3447 (4)0.65717 (12)0.0330 (9)
H180.86610.44080.66470.040*
C190.86766 (16)0.2867 (4)0.60527 (13)0.0252 (7)
C200.5318 (2)0.1994 (5)0.01409 (19)0.0615 (13)
H20A0.52470.25080.04830.092*
H20B0.49040.13900.00960.092*
H20C0.57370.13740.01360.092*
C210.5542 (2)0.2019 (5)0.09367 (19)0.0580 (13)
H21A0.56170.25510.12750.087*
H21B0.59500.13930.08970.087*
H21C0.51160.14200.09350.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0294 (3)0.0185 (3)0.0161 (3)0.0020 (3)0.0053 (2)0.0006 (2)
S10.0359 (4)0.0216 (5)0.0173 (4)0.0002 (4)0.0042 (3)0.0015 (3)
S20.0332 (5)0.0450 (7)0.0512 (6)0.0053 (5)0.0129 (4)0.0132 (5)
N10.053 (2)0.048 (2)0.0219 (15)0.0008 (17)0.0073 (14)0.0063 (14)
N20.0343 (15)0.0295 (18)0.0192 (13)0.0021 (13)0.0053 (11)0.0032 (12)
N30.0378 (16)0.0256 (17)0.0202 (13)0.0056 (13)0.0041 (11)0.0039 (12)
N40.0314 (14)0.0211 (16)0.0166 (12)0.0005 (12)0.0059 (11)0.0036 (11)
N50.0259 (14)0.0213 (16)0.0192 (12)0.0018 (12)0.0069 (10)0.0026 (11)
N60.0275 (14)0.0239 (17)0.0255 (14)0.0023 (12)0.0028 (11)0.0027 (12)
O10.0355 (13)0.0473 (18)0.0255 (12)0.0032 (12)0.0031 (10)0.0014 (11)
C10.049 (2)0.039 (2)0.0228 (17)0.0024 (18)0.0068 (16)0.0055 (16)
C20.039 (2)0.039 (3)0.0268 (18)0.0054 (18)0.0087 (15)0.0032 (17)
C30.043 (2)0.049 (3)0.0314 (19)0.002 (2)0.0063 (17)0.0078 (18)
C40.040 (2)0.043 (3)0.047 (2)0.0003 (19)0.0002 (18)0.012 (2)
C50.040 (2)0.042 (3)0.054 (2)0.0023 (19)0.0148 (19)0.004 (2)
C60.0386 (19)0.036 (2)0.0304 (18)0.0014 (17)0.0104 (15)0.0004 (16)
C70.0352 (19)0.037 (2)0.0235 (16)0.0067 (17)0.0086 (14)0.0000 (15)
C80.040 (2)0.035 (2)0.0218 (16)0.0003 (17)0.0072 (15)0.0051 (15)
C90.0378 (19)0.030 (2)0.0249 (17)0.0000 (16)0.0079 (14)0.0034 (15)
C100.0269 (16)0.024 (2)0.0214 (15)0.0052 (14)0.0077 (13)0.0041 (14)
C110.0260 (16)0.025 (2)0.0210 (15)0.0025 (14)0.0059 (13)0.0033 (14)
C120.0243 (16)0.025 (2)0.0221 (15)0.0018 (14)0.0040 (12)0.0026 (14)
C130.0241 (15)0.022 (2)0.0241 (16)0.0008 (14)0.0030 (12)0.0015 (14)
C140.0211 (16)0.033 (2)0.0285 (17)0.0031 (14)0.0039 (13)0.0019 (15)
C150.0316 (19)0.034 (2)0.0370 (19)0.0002 (16)0.0006 (15)0.0077 (17)
C160.035 (2)0.050 (3)0.036 (2)0.0012 (19)0.0063 (16)0.0151 (19)
C170.043 (2)0.050 (3)0.0260 (18)0.006 (2)0.0013 (15)0.0019 (18)
C180.0357 (19)0.039 (2)0.0247 (17)0.0036 (17)0.0024 (15)0.0016 (16)
C190.0243 (16)0.024 (2)0.0280 (17)0.0036 (13)0.0051 (13)0.0024 (14)
C200.042 (2)0.064 (3)0.077 (3)0.018 (2)0.005 (2)0.012 (3)
C210.049 (2)0.053 (3)0.076 (3)0.010 (2)0.026 (2)0.031 (2)
Geometric parameters (Å, º) top
Ni1—N5i1.906 (3)C5—C61.386 (5)
Ni1—N51.906 (3)C5—H50.9500
Ni1—S1i2.1748 (8)C6—C71.396 (5)
Ni1—S12.1748 (8)C6—H60.9500
S1—C101.726 (3)C7—C81.434 (5)
S2—O11.496 (2)C8—C91.438 (5)
S2—C201.790 (5)C9—H90.9500
S2—C211.794 (4)C11—C121.420 (5)
N1—C21.356 (5)C11—H110.9500
N1—C11.362 (4)C12—C131.386 (4)
N1—H1N0.8800C12—C191.456 (4)
N2—C91.293 (4)C13—H130.9500
N2—N31.374 (4)C14—C151.394 (5)
N3—C101.369 (4)C14—C191.400 (5)
N3—H3N0.8800C15—C161.377 (5)
N4—C101.298 (4)C15—H150.9500
N4—N51.400 (3)C16—C171.392 (6)
N5—C111.304 (4)C16—H160.9500
N6—C131.345 (4)C17—C181.372 (5)
N6—C141.384 (4)C17—H170.9500
N6—H6N0.8800C18—C191.408 (4)
C1—C81.370 (5)C18—H180.9500
C1—H10.9500C20—H20A0.9800
C2—C31.385 (5)C20—H20B0.9800
C2—C71.428 (4)C20—H20C0.9800
C3—C41.367 (6)C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.401 (5)C21—H21C0.9800
C4—H40.9500
N5i—Ni1—N5180.000 (1)C7—C8—C9129.1 (3)
N5i—Ni1—S1i86.25 (7)N2—C9—C8121.3 (3)
N5—Ni1—S1i93.75 (7)N2—C9—H9119.3
N5i—Ni1—S193.75 (7)C8—C9—H9119.3
N5—Ni1—S186.25 (7)N4—C10—N3115.5 (3)
S1i—Ni1—S1180.000 (1)N4—C10—S1125.0 (2)
C10—S1—Ni194.55 (10)N3—C10—S1119.5 (2)
O1—S2—C20105.20 (18)N5—C11—C12129.6 (3)
O1—S2—C21105.92 (18)N5—C11—H11115.2
C20—S2—C2197.8 (3)C12—C11—H11115.2
C2—N1—C1110.0 (3)C13—C12—C11131.2 (3)
C2—N1—H1N125.0C13—C12—C19105.5 (3)
C1—N1—H1N125.0C11—C12—C19123.3 (3)
C9—N2—N3113.5 (3)N6—C13—C12110.1 (3)
C10—N3—N2120.1 (3)N6—C13—H13124.9
C10—N3—H3N119.9C12—C13—H13124.9
N2—N3—H3N119.9N6—C14—C15130.1 (3)
C10—N4—N5111.3 (3)N6—C14—C19107.2 (3)
C11—N5—N4113.6 (3)C15—C14—C19122.7 (3)
C11—N5—Ni1126.4 (2)C16—C15—C14116.7 (4)
N4—N5—Ni1120.03 (19)C16—C15—H15121.6
C13—N6—C14110.1 (3)C14—C15—H15121.6
C13—N6—H6N125.0C15—C16—C17122.0 (3)
C14—N6—H6N125.0C15—C16—H16119.0
N1—C1—C8109.2 (4)C17—C16—H16119.0
N1—C1—H1125.4C18—C17—C16121.2 (3)
C8—C1—H1125.4C18—C17—H17119.4
N1—C2—C3131.2 (3)C16—C17—H17119.4
N1—C2—C7107.9 (3)C17—C18—C19118.6 (4)
C3—C2—C7120.9 (4)C17—C18—H18120.7
C4—C3—C2118.7 (4)C19—C18—H18120.7
C4—C3—H3120.7C14—C19—C18118.8 (3)
C2—C3—H3120.7C14—C19—C12107.1 (3)
C3—C4—C5121.5 (4)C18—C19—C12134.1 (3)
C3—C4—H4119.3S2—C20—H20A109.5
C5—C4—H4119.3S2—C20—H20B109.5
C6—C5—C4120.8 (4)H20A—C20—H20B109.5
C6—C5—H5119.6S2—C20—H20C109.5
C4—C5—H5119.6H20A—C20—H20C109.5
C5—C6—C7118.8 (3)H20B—C20—H20C109.5
C5—C6—H6120.6S2—C21—H21A109.5
C7—C6—H6120.6S2—C21—H21B109.5
C6—C7—C2119.3 (3)H21A—C21—H21B109.5
C6—C7—C8135.2 (3)S2—C21—H21C109.5
C2—C7—C8105.4 (3)H21A—C21—H21C109.5
C1—C8—C7107.5 (3)H21B—C21—H21C109.5
C1—C8—C9123.4 (4)
N5i—Ni1—S1—C10167.97 (12)C7—C8—C9—N28.1 (6)
N5—Ni1—S1—C1012.03 (12)N5—N4—C10—N3178.4 (2)
C9—N2—N3—C10170.8 (3)N5—N4—C10—S11.3 (4)
C10—N4—N5—C11164.8 (3)N2—N3—C10—N4179.0 (3)
C10—N4—N5—Ni114.8 (3)N2—N3—C10—S10.7 (4)
S1i—Ni1—N5—C1117.7 (3)Ni1—S1—C10—N49.5 (3)
S1—Ni1—N5—C11162.3 (3)Ni1—S1—C10—N3170.8 (2)
S1i—Ni1—N5—N4162.8 (2)N4—N5—C11—C122.2 (5)
S1—Ni1—N5—N417.2 (2)Ni1—N5—C11—C12177.4 (2)
C2—N1—C1—C81.6 (4)N5—C11—C12—C1312.0 (6)
C1—N1—C2—C3179.1 (4)N5—C11—C12—C19170.0 (3)
C1—N1—C2—C70.7 (4)C14—N6—C13—C120.7 (4)
N1—C2—C3—C4178.5 (4)C11—C12—C13—N6178.3 (3)
C7—C2—C3—C41.3 (6)C19—C12—C13—N60.0 (4)
C2—C3—C4—C50.3 (6)C13—N6—C14—C15176.7 (3)
C3—C4—C5—C60.0 (6)C13—N6—C14—C191.1 (3)
C4—C5—C6—C70.7 (6)N6—C14—C15—C16177.8 (3)
C5—C6—C7—C21.8 (5)C19—C14—C15—C160.4 (5)
C5—C6—C7—C8179.1 (4)C14—C15—C16—C170.9 (5)
N1—C2—C7—C6177.7 (3)C15—C16—C17—C180.9 (6)
C3—C2—C7—C62.1 (5)C16—C17—C18—C190.4 (5)
N1—C2—C7—C80.3 (4)N6—C14—C19—C18179.5 (3)
C3—C2—C7—C8179.8 (3)C15—C14—C19—C181.6 (5)
N1—C1—C8—C71.8 (4)N6—C14—C19—C121.1 (3)
N1—C1—C8—C9176.2 (3)C15—C14—C19—C12176.9 (3)
C6—C7—C8—C1176.3 (4)C17—C18—C19—C141.5 (5)
C2—C7—C8—C11.3 (4)C17—C18—C19—C12176.4 (3)
C6—C7—C8—C95.9 (7)C13—C12—C19—C140.7 (3)
C2—C7—C8—C9176.5 (3)C11—C12—C19—C14179.1 (3)
N3—N2—C9—C8179.2 (3)C13—C12—C19—C18178.8 (3)
C1—C8—C9—N2169.4 (3)C11—C12—C19—C182.7 (6)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.882.102.890 (4)148
N6—H6n···O1ii0.882.032.855 (4)156
Symmetry code: (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C19H15N6S)2]·2C2H6OS
Mr933.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)19.0340 (5), 9.1982 (3), 25.1374 (7)
β (°) 95.672 (2)
V3)4379.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.30 × 0.03 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.821, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
27119, 5030, 3201
Rint0.092
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.04
No. of reflections5030
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Ni1—N51.906 (3)Ni1—S12.1748 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O10.882.102.890 (4)148
N6—H6n···O1i0.882.032.855 (4)156
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, S., Chaudhury, S. P. & Ds, H. R. (1999). J. Ind. Chem. Soc. 76, 463–464.  CAS Google Scholar
First citationRizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64. submitted (sg2241).  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds