metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m829-m830

(Benzoato-κ2O,O′)(quinoline-2-carboxyl­ato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)copper(II)

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 27 April 2008; accepted 12 May 2008; online 21 May 2008)

The crystal structure of the title compound, [Cu(C10H6NO2)(C7H5O2)(C10H7NO2)], contains copper(II) ions five-coordinated in a distorted trigonal-bipyramidal environment. The equatorial plane is occupied by three O atoms, one from the carboxyl­ate group of the benzoate ion considered as occupying a single coordination site, the other two from two carboxyl­ate groups of the quinaldic acid and quinaldate ligands. The axial positions are occupied by the N atoms of the quinoline ring system. The metal ion lies on a twofold axis that bisects the benzoate ion. The quinaldate and quinaldic acid ligands are equivalent by symmetry, and the carboxyl­ate/carboxyl groups are disordered. The disordered H atom is shared between the carboxyl­ate groups of adjacent quinaldic acid mol­ecules. Such hydrogen bonds delineate zigzag chains that run along the c axis. The structure is very similar to that of the MnII analog.

Related literature

For related literature, see: Zurowska et al. (2007[Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085-3091.]); Dobrzynska et al. (2005[Dobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945-1951.]); Kumar & Gandotra (1980[Kumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365-367.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843-844.]); Martins et al. (2008[Martins, N. D., Silva, J. A., Ramos Silva, M., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, m258.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H6NO2)(C7H5O2)(C10H7NO2)]

  • Mr = 529.97

  • Monoclinic, C 2/c

  • a = 19.1140 (9) Å

  • b = 11.4665 (5) Å

  • c = 12.1885 (8) Å

  • β = 118.788 (1)°

  • V = 2341.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.75, Tmax = 0.82

  • 27106 measured reflections

  • 2928 independent reflections

  • 2536 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.06

  • 2928 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O4i 0.82 1.76 2.560 (3) 165
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some compounds with quinoline derivatives, transition metal ions and halide ions exhibit interesting magnetic properties related with the formation of low dimensional elements (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). The crystal structure of the title compound, I, Cu (C7H5O2) (C10H7NO2)(C10H6NO2), consists of copper(II) ions five-coordinated in a distorted trigonal-bipyramidal environment (Fig. 1). The equatorial plane is occupied by three oxygen atoms with Cu—O distances of 1.970 (3) and 2.0553 (16) Å. One equatorial O atom belongs to the carboxylate group of the benzoate ion and each of the two quinoline molecules supply another O atom to the Cu coordination environment. The axial positions are occupied by the nitrogen atoms of the quinoline ring system, with distance 2.0424 (16) Å. There is a two fold axis running through the metal positions and almost longitudinally through the benzoate ion, that is thus disordered over two positions. The non-coordinating benzoate O atom is situated at a 2.678 (3)Å distance from the metal ion. With the exception of above mentioned benzoate disorder, the title compound shows a very similar arrangement to that of the Mn(II) analog (Martins et al., 2008). The complexes are joined together by hydrogen bonds between the carboxylate/carboxyl groups of adjacent quinaldate/quinaldic acid molecules, forming zigzag chains that run along the c axis (Fig. 2). The shared hydrogen atom is disordered and the quinoline molecules are statistically neutral or negatively charged.

Related literature top

For related literature, see: Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974); Martins et al. (2008).

Experimental top

Approximately 0.12 mmol of 2-quinolinecarboxaldehyde (Sigma, 97%) was added to 0.12 mmol of copper chloride in an 10 ml dimethylformamide/benzoic acid solution. After a few weeks, single crystals of suitable quality were grown from the solution. The refined structure shows that the crystals incorporated a different quinoline derivative than that expected showing the material purchased from Sigma was contaminated.

Refinement top

H-atoms were positioned geometrically and refined using a riding model with C—H=0.93 Å, Uiso(H)=1.2Ueq(C). The carboxylic hydrogen atom, that could be located in a difference map, was positioned geometrically and refined within a riding model (HFIX 83), its occupancy was fixed to 0.5.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. A chain formed via H-bonds running along the c axis.
(Benzoato-κ2O,O')(quinoline-2-carboxylato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)copper(II) top
Crystal data top
[Cu(C10H6NO2)(C7H5O2)(C10H7NO2)]F(000) = 1084
Mr = 529.97Dx = 1.504 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4050 reflections
a = 19.1140 (9) Åθ = 3.2–26.8°
b = 11.4665 (5) ŵ = 0.98 mm1
c = 12.1885 (8) ÅT = 293 K
β = 118.788 (1)°Block, green
V = 2341.2 (2) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2928 independent reflections
Radiation source: fine-focus sealed tube2536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2425
Tmin = 0.75, Tmax = 0.82k = 1515
27106 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0492P)2 + 2.1952P]
where P = (Fo2 + 2Fc2)/3
2928 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C10H6NO2)(C7H5O2)(C10H7NO2)]V = 2341.2 (2) Å3
Mr = 529.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.1140 (9) ŵ = 0.98 mm1
b = 11.4665 (5) ÅT = 293 K
c = 12.1885 (8) Å0.26 × 0.22 × 0.20 mm
β = 118.788 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2928 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2536 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.82Rint = 0.019
27106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2928 reflectionsΔρmin = 0.32 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.31494 (3)0.25000.04408 (13)
O10.51571 (18)0.1520 (3)0.3083 (3)0.0467 (7)0.50
O20.47650 (18)0.1264 (3)0.1065 (3)0.0517 (7)0.50
C10.4960 (2)0.0874 (4)0.2116 (3)0.0406 (9)0.50
O30.49011 (9)0.42154 (18)0.10765 (18)0.0766 (6)
H10.52180.44120.08370.115*0.50
O40.39680 (14)0.5024 (3)0.0713 (3)0.1504 (15)
N10.37963 (10)0.34319 (16)0.15664 (16)0.0460 (4)
C20.50000.0419 (3)0.25000.0568 (8)
C30.50955 (16)0.1029 (3)0.3531 (2)0.0671 (7)
H30.51650.06280.42390.080*
C40.50904 (19)0.2216 (3)0.3528 (3)0.0774 (8)
H40.51490.26200.42280.093*
C50.50000.2814 (3)0.25000.0767 (11)
H50.50000.36250.25000.092*
C60.41763 (13)0.4477 (2)0.0220 (2)0.0563 (5)
C70.35528 (12)0.40982 (19)0.05672 (19)0.0492 (5)
C80.27586 (13)0.4476 (2)0.0157 (2)0.0631 (6)
H80.26090.49350.08650.076*
C90.22163 (14)0.4154 (3)0.0204 (3)0.0690 (7)
H90.16880.43920.02600.083*
C100.24486 (14)0.3469 (2)0.1267 (3)0.0632 (6)
C110.19152 (17)0.3123 (3)0.1708 (4)0.0827 (9)
H110.13850.33610.12800.099*
C120.21650 (19)0.2459 (4)0.2729 (4)0.0950 (11)
H120.18070.22460.30070.114*
C130.2958 (2)0.2080 (3)0.3386 (3)0.0862 (9)
H130.31220.16170.40950.103*
C140.34976 (15)0.2385 (3)0.2997 (2)0.0657 (6)
H140.40220.21220.34310.079*
C150.32525 (13)0.30941 (19)0.1942 (2)0.0522 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03721 (19)0.03809 (19)0.0498 (2)0.0000.01525 (15)0.000
O10.0443 (16)0.0374 (16)0.0491 (16)0.0029 (13)0.0152 (13)0.0017 (14)
O20.0571 (17)0.0465 (17)0.0476 (16)0.0006 (13)0.0221 (14)0.0053 (13)
C10.0313 (17)0.039 (2)0.047 (2)0.0006 (17)0.015 (2)0.0005 (15)
O30.0441 (8)0.0868 (13)0.0932 (13)0.0102 (8)0.0286 (8)0.0495 (11)
O40.0687 (14)0.217 (4)0.144 (2)0.0178 (17)0.0337 (15)0.124 (2)
N10.0362 (8)0.0478 (9)0.0496 (9)0.0066 (7)0.0172 (7)0.0082 (7)
C20.0363 (13)0.0389 (15)0.094 (2)0.0000.0301 (15)0.000
C30.0658 (15)0.0756 (17)0.0649 (14)0.0121 (13)0.0356 (12)0.0229 (13)
C40.087 (2)0.0765 (18)0.0623 (15)0.0115 (15)0.0309 (14)0.0163 (14)
C50.080 (3)0.0383 (16)0.092 (3)0.0000.026 (2)0.000
C60.0461 (11)0.0635 (14)0.0533 (11)0.0014 (10)0.0192 (9)0.0046 (10)
C70.0401 (10)0.0490 (11)0.0510 (11)0.0015 (8)0.0158 (8)0.0064 (9)
C80.0441 (11)0.0684 (15)0.0636 (13)0.0069 (10)0.0155 (10)0.0013 (12)
C90.0395 (11)0.0742 (17)0.0812 (17)0.0045 (11)0.0194 (11)0.0122 (14)
C100.0425 (11)0.0688 (15)0.0784 (16)0.0107 (10)0.0291 (11)0.0234 (13)
C110.0506 (14)0.101 (2)0.105 (2)0.0152 (14)0.0443 (16)0.0185 (19)
C120.0675 (18)0.126 (3)0.114 (3)0.0322 (19)0.0611 (19)0.022 (2)
C130.0775 (19)0.106 (3)0.088 (2)0.0260 (17)0.0494 (17)0.0001 (17)
C140.0536 (13)0.0770 (17)0.0695 (14)0.0168 (12)0.0320 (12)0.0058 (13)
C150.0416 (10)0.0560 (13)0.0595 (12)0.0126 (9)0.0247 (9)0.0154 (10)
Geometric parameters (Å, º) top
Cu1—O1i1.970 (3)C3—C41.361 (4)
Cu1—O11.970 (3)C3—H30.9300
Cu1—N12.0424 (16)C4—C51.364 (4)
Cu1—N1i2.0424 (16)C4—H40.9300
Cu1—O3i2.0553 (16)C5—C4i1.364 (4)
Cu1—O32.0553 (16)C5—H50.9300
O1—C1i0.777 (4)C6—C71.508 (3)
O1—O2i1.018 (4)C7—C81.407 (3)
O1—O1i1.249 (7)C8—C91.358 (4)
O1—C11.285 (4)C8—H80.9300
O2—O1i1.018 (4)C9—C101.392 (4)
O2—C11.233 (5)C9—H90.9300
C1—O1i0.777 (4)C10—C151.416 (3)
C1—C1i0.872 (8)C10—C111.419 (4)
C1—C21.545 (5)C11—C121.336 (5)
O3—C61.306 (3)C11—H110.9300
O3—H10.8200C12—C131.400 (5)
O4—C61.187 (3)C12—H120.9300
N1—C71.318 (3)C13—C141.371 (4)
N1—C151.378 (3)C13—H130.9300
C2—C3i1.372 (3)C14—C151.398 (4)
C2—C31.372 (3)C14—H140.9300
C2—C1i1.545 (5)
O1i—Cu1—O136.95 (19)C3—C2—C1i104.3 (2)
O1i—Cu1—N190.82 (10)C4—C3—C2120.7 (2)
O1—Cu1—N1106.65 (10)C4—C3—H3119.6
O1i—Cu1—N1i106.65 (10)C2—C3—H3119.6
O1—Cu1—N1i90.82 (10)C3—C4—C5120.2 (3)
N1—Cu1—N1i161.74 (10)C3—C4—H4119.9
O1i—Cu1—O3i143.58 (12)C5—C4—H4119.9
O1—Cu1—O3i108.87 (12)C4i—C5—C4119.6 (4)
N1—Cu1—O3i89.83 (7)C4i—C5—H5120.2
N1i—Cu1—O3i79.30 (7)C4—C5—H5120.2
O1i—Cu1—O3108.87 (12)O4—C6—O3128.6 (2)
O1—Cu1—O3143.58 (12)O4—C6—C7118.4 (2)
N1—Cu1—O379.30 (7)O3—C6—C7112.78 (19)
N1i—Cu1—O389.83 (7)N1—C7—C8123.5 (2)
O3i—Cu1—O3107.02 (13)N1—C7—C6116.81 (18)
C1i—O1—O2i85.6 (5)C8—C7—C6119.6 (2)
O2i—O1—O1i156.1 (4)C9—C8—C7118.3 (2)
O2i—O1—C1127.1 (3)C9—C8—H8120.9
C1i—O1—Cu1145.0 (5)C7—C8—H8120.9
O2i—O1—Cu1124.3 (3)C8—C9—C10120.3 (2)
O1i—O1—Cu171.52 (10)C8—C9—H9119.9
C1—O1—Cu1106.8 (3)C10—C9—H9119.9
O1i—C1—C1i102.2 (5)C9—C10—C15118.9 (2)
O1i—C1—O255.5 (4)C9—C10—C11123.0 (3)
C1i—C1—O2157.5 (4)C15—C10—C11118.1 (3)
O1i—C1—O169.6 (5)C12—C11—C10120.8 (3)
O2—C1—O1123.6 (4)C12—C11—H11119.6
O1i—C1—C2166.6 (5)C10—C11—H11119.6
C1i—C1—C273.61 (15)C11—C12—C13120.8 (3)
O2—C1—C2127.5 (4)C11—C12—H12119.6
O1—C1—C2109.0 (3)C13—C12—H12119.6
C6—O3—Cu1116.24 (14)C14—C13—C12120.7 (3)
C6—O3—H1109.5C14—C13—H13119.7
Cu1—O3—H1132.9C12—C13—H13119.7
C7—N1—C15118.85 (18)C13—C14—C15119.5 (3)
C7—N1—Cu1114.11 (14)C13—C14—H14120.3
C15—N1—Cu1126.73 (15)C15—C14—H14120.3
C3i—C2—C3118.6 (3)N1—C15—C14119.8 (2)
C3i—C2—C1104.3 (2)N1—C15—C10120.2 (2)
C3—C2—C1137.1 (2)C14—C15—C10120.0 (2)
C3i—C2—C1i137.1 (2)
O1i—Cu1—O1—C1i15.7 (7)O3i—Cu1—N1—C1565.38 (18)
N1—Cu1—O1—C1i52.4 (9)O3—Cu1—N1—C15172.74 (19)
N1i—Cu1—O1—C1i132.9 (8)O1i—C1—C2—C3i108 (2)
O3i—Cu1—O1—C1i148.1 (8)C1i—C1—C2—C3i179.0 (5)
O3—Cu1—O1—C1i42.1 (9)O2—C1—C2—C3i9.9 (5)
O1i—Cu1—O1—O2i159.9 (6)O1—C1—C2—C3i170.9 (3)
N1—Cu1—O1—O2i91.8 (4)O1i—C1—C2—C372 (2)
N1i—Cu1—O1—O2i82.8 (4)C1i—C1—C2—C31.4 (7)
O3i—Cu1—O1—O2i3.9 (4)O2—C1—C2—C3169.7 (3)
O3—Cu1—O1—O2i173.7 (3)O1—C1—C2—C39.5 (4)
N1—Cu1—O1—O1i68.1 (3)O1i—C1—C2—C1i73 (2)
N1i—Cu1—O1—O1i117.2 (3)O2—C1—C2—C1i171.1 (9)
O3i—Cu1—O1—O1i163.8 (3)O1—C1—C2—C1i8.2 (3)
O3—Cu1—O1—O1i26.4 (4)C3i—C2—C3—C40.4 (2)
O1i—Cu1—O1—C15.6 (2)C1—C2—C3—C4179.1 (3)
N1—Cu1—O1—C173.7 (3)C1i—C2—C3—C4179.9 (3)
N1i—Cu1—O1—C1111.6 (2)C2—C3—C4—C50.9 (4)
O3i—Cu1—O1—C1169.4 (2)C3—C4—C5—C4i0.4 (2)
O3—Cu1—O1—C120.8 (3)Cu1—O3—C6—O4176.0 (3)
O1i—O2—C1—C1i6.7 (16)Cu1—O3—C6—C79.5 (3)
O1i—O2—C1—O115.3 (5)C15—N1—C7—C80.9 (3)
O1i—O2—C1—C2163.8 (7)Cu1—N1—C7—C8175.00 (18)
C1i—O1—C1—O1i152.6 (11)C15—N1—C7—C6177.99 (18)
O2i—O1—C1—O1i155.8 (7)Cu1—N1—C7—C63.9 (2)
Cu1—O1—C1—O1i9.2 (4)O4—C6—C7—N1175.9 (3)
O2i—O1—C1—C1i3.3 (8)O3—C6—C7—N19.0 (3)
O1i—O1—C1—C1i152.6 (11)O4—C6—C7—C85.2 (4)
Cu1—O1—C1—C1i161.7 (7)O3—C6—C7—C8170.0 (2)
C1i—O1—C1—O2166.0 (10)N1—C7—C8—C91.2 (4)
O2i—O1—C1—O2169.3 (3)C6—C7—C8—C9177.7 (2)
O1i—O1—C1—O213.4 (4)C7—C8—C9—C100.1 (4)
Cu1—O1—C1—O24.2 (5)C8—C9—C10—C151.5 (4)
C1i—O1—C1—C213.3 (5)C8—C9—C10—C11178.7 (3)
O2i—O1—C1—C210.0 (5)C9—C10—C11—C12179.6 (3)
O1i—O1—C1—C2165.9 (6)C15—C10—C11—C120.2 (4)
Cu1—O1—C1—C2175.0 (2)C10—C11—C12—C130.5 (6)
O1i—Cu1—O3—C681.1 (2)C11—C12—C13—C140.1 (6)
O1—Cu1—O3—C697.5 (2)C12—C13—C14—C150.9 (5)
N1—Cu1—O3—C66.11 (19)C7—N1—C15—C14179.8 (2)
N1i—Cu1—O3—C6171.4 (2)Cu1—N1—C15—C146.9 (3)
O3i—Cu1—O3—C692.6 (2)C7—N1—C15—C100.6 (3)
O1i—Cu1—N1—C7108.25 (18)Cu1—N1—C15—C10172.68 (16)
O1—Cu1—N1—C7142.16 (17)C13—C14—C15—N1178.1 (2)
N1i—Cu1—N1—C755.17 (14)C13—C14—C15—C101.5 (4)
O3i—Cu1—N1—C7108.16 (16)C9—C10—C15—N11.8 (3)
O3—Cu1—N1—C70.80 (15)C11—C10—C15—N1178.4 (2)
O1i—Cu1—N1—C1578.21 (19)C9—C10—C15—C14178.6 (2)
O1—Cu1—N1—C1544.3 (2)C11—C10—C15—C141.2 (4)
N1i—Cu1—N1—C15118.37 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O4ii0.821.762.560 (3)165
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H6NO2)(C7H5O2)(C10H7NO2)]
Mr529.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.1140 (9), 11.4665 (5), 12.1885 (8)
β (°) 118.788 (1)
V3)2341.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.75, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
27106, 2928, 2536
Rint0.019
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.06
No. of reflections2928
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.32

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O4i0.821.762.560 (3)165.4
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843–844.  Google Scholar
First citationDobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365–367.  CrossRef CAS Web of Science Google Scholar
First citationMartins, N. D., Silva, J. A., Ramos Silva, M., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, m258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085–3091.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m829-m830
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds