organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1082-o1083

N,N′,N′′-Tri­phenyl­guanidinium 5-nitro-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ide

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: psidonio@pollux.fis.uc.pt

(Received 30 April 2008; accepted 12 May 2008; online 17 May 2008)

In the title compound, C19H18N3+.C4H2N3O4, the dihedral angles between the phenyl rings and the plane defined by the central guanidinium fragment are in the range 41.3 (1)–66.6 (1)°. The pyrimidine ring of the anion is distorted towards a boat conformation and the nitro group is rotated 11.4 (2)° out of the uracil plane. Hydrogen bonds assemble the ions in infinite helical chains along the b axis.

Related literature

For the non-linear optical properties of 5-nitro­uracil, see: Puccetti et al. (1993[Puccetti, G., Perigaud, A., Badan, J., Ledoux, I. & Zyss, J. (1993). J. Opt. Soc. Am. B, 10, 733-744.]), Youping et al. (1992[Youping, H., Genbo, S., Bochang, W. & Rihong, J. (1992). J. Cryst. Growth, 119, 393-398.]). For reports of other triphenyl­guanidine salts, see: Pereira Silva et al. (2006[Pereira Silva, P. S., Paixão, J. A., Ramos Silva, M. & Matos Beja, A. (2006). Acta Cryst. E62, o3073-o3075.], 2007a[Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007a). Acta Cryst. E63, o2243-o2245.],b[Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007b). Acta Cryst. E63, o2524-o2526.]), Pereira Silva, Cardoso et al. (2007[Pereira Silva, P. S., Cardoso, C., Ramos Silva, M. & Paixão, J. A. (2007). Acta Cryst. E63, o501-o503.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Kemme et al. (1988[Kemme, A., Rutkis, M. & Eiduss, J. (1988). Latv. PSR Zinat. Akad. Vestis Kim. Ser. 5, 595-601.]); Klement et al. (1995[Klement, U., Range, K.-J., Hayessen, R. & Heckmann, K.-D. (1995). Z. Kristallogr. 220, 611.]); Largent et al. (1987[Largent, B. L., Wikström, H., Gundlach, A. L. & Snyder, S. H. (1987). Mol. Pharmacol. 32, 772-784.]); Pettier & Byrn (1982[Pettier, P. R. & Byrn, S. R. (1982). J. Org. Chem. 47, 4671-4676.]); Rao et al. (1995[Rao, T. S., Rando, R. F., Huffman, J. H. & Revankar, G. R. (1995). Nucleosides Nucleotides, 14, 1997-2008.]); Weber et al. (1986[Weber, E., Sonders, M., Quarum, M., McLean, S., Pou, S. & Keana, J. F. W. (1986). Proc. Natl Acad. Sci. USA, 83, 8784-8788.]); Zyss et al. (1993[Zyss, J., Pecaut, J., Levy, J. P. & Masse, R. (1993). Acta Cryst. B49, 334-342.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N3+·C4H2N3O4

  • Mr = 444.45

  • Monoclinic, P 21 /c

  • a = 10.7495 (4) Å

  • b = 15.6892 (7) Å

  • c = 15.5624 (7) Å

  • β = 123.456 (3)°

  • V = 2189.74 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.34 × 0.20 × 0.12 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.822, Tmax = 0.989

  • 47807 measured reflections

  • 5534 independent reflections

  • 2650 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 0.99

  • 5534 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O2i 0.86 1.94 2.794 (2) 174
N7—H7⋯N1i 0.86 2.21 2.934 (2) 142
N8—H8⋯O4ii 0.86 2.05 2.887 (2) 163
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

5-Nitrouracil is currently of prime interest to the non-linear optical community (Puccetti et al., 1993; Youping et al., 1992) and is also of relevance to the biological and pharmaceutical sciences (Rao et al., 1995; Pettier & Byrn, 1982).

Much of the interest in guanidine compounds and its derivatives is due to their biological activity, in particular their neuroleptic and antipsychotic properties (Weber et al., 1986; Largent et al., 1987). Our interest is focused on the physical properties of guanidine compounds, which are regarded as potentially interesting for non-linear optics applications (Zyss et al., 1993). We are currently engaged in a research project aimed at investigating the structural, dielectric and optical properties of triphenylguanidine compounds.

Compound (I) (Fig.1) is built up from triphenylguanidinium cations and 5-nitrouracilate anions. The pyrimidine ring is almost planar with a slight distortion towards a boat configuration. The nitro group is rotated 11.4 (2)° out of the plane of the uracil fragment. The central guanidine fragment of the cation of the title salt is planar with bond lengths and angles close to those expected for a central Csp2 atom, accounting for some charge delocalization between the three C—N bonds. The bond lengths C7—N6 [1.333 (2) Å], C7—N7 [1.330 (2) Å] and C7—N8 [1.337 (2) Å] are comparable with literature averages for substituted and unsubstituted guanidinium cations (1.321 and 1.328 Å, respectively; Allen et al., 1987)

The dihedral angles between the ring planes and the plane defined by the central guanidinium fragment are 41.3 (1)(C8—C13), 57.5 (1)(C14—C19) and 66.6 (1)° (C20—C25). The corresponding angles for other triphenylguanidinium salts reported in the literature are within the range 32.6 (3)–70.2 (3)° (Kemme et al., 1988; Klement et al., 1995; Pereira Silva et al., 2006, 2007a, 2007b, Pereira Silva, Cardoso et al.,(2007).

The anions and cations are linked into infinite helical chains running parallel to the b axis, via hydrogen bonds involving all the NH groups of the guanidinium fragment, the carbonyl O atoms and the deprotonated N atom of the anion (Fig. 2, Table 2). Atoms O2 and N1 accept each one H atom across a crystallographic centre of symmetry, while the O4 atom accept one hydrogen from the N8 atom related by a twofold screw axis.

Related literature top

For the non-linear optical properties of 5-nitrouracil, see: Puccetti et al. (1993), Youping et al. (1992). For reports of other triphenylguanidine salts, see: Pereira Silva et al. (2006, 2007a,b), Pereira Silva, Cardoso et al. (2007). For related literature, see: Allen et al. (1987); Kemme et al. (1988); Klement et al. (1995); Largent et al. (1987); Pettier & Byrn (1982); Rao et al. (1995); Weber et al. (1986); Zyss et al. (1993).

Experimental top

The title compound was prepared by adding 5-nitrouracil (Aldrich, 98%, 1 mmol) to triphenylguanidine (TCI 97%, 1 mmol) in a ethanol solution (80 ml). The solution was slowly warmed and then left to evaporate under ambient conditions. After a few days, small yellow transparent single crystals were deposited.

Refinement top

All H atoms were located in a difference Fourier synthesis, placed at calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults [C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N)].

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Spek,2003) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram, viewed down the c axis, with the hydrogen bonds depicted as dashed lines. The phenyl rings have been omitted for clarity.
N,N',N''-Triphenylguanidinium 5-nitro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide top
Crystal data top
C19H18N3+·C4H2N3O4F(000) = 928
Mr = 444.45Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5110 reflections
a = 10.7495 (4) Åθ = 2.3–21.6°
b = 15.6892 (7) ŵ = 0.10 mm1
c = 15.5624 (7) ÅT = 293 K
β = 123.456 (3)°Block, yellow
V = 2189.74 (18) Å30.34 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
5534 independent reflections
Radiation source: fine-focus sealed tube2650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.822, Tmax = 0.989k = 2021
47807 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.1061P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5534 reflectionsΔρmax = 0.22 e Å3
299 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (11)
Crystal data top
C19H18N3+·C4H2N3O4V = 2189.74 (18) Å3
Mr = 444.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7495 (4) ŵ = 0.10 mm1
b = 15.6892 (7) ÅT = 293 K
c = 15.5624 (7) Å0.34 × 0.20 × 0.12 mm
β = 123.456 (3)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
5534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2650 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.989Rint = 0.086
47807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 0.99Δρmax = 0.22 e Å3
5534 reflectionsΔρmin = 0.17 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.82985 (16)0.17695 (11)0.60642 (13)0.0729 (5)
O40.61600 (16)0.07278 (11)0.59408 (15)0.0968 (6)
O70.7653 (2)0.21285 (11)0.59093 (15)0.0949 (6)
O80.9257 (2)0.19450 (12)0.55194 (16)0.0940 (6)
N10.93683 (17)0.06007 (12)0.58600 (13)0.0581 (5)
N30.72353 (18)0.04940 (13)0.59167 (16)0.0759 (6)
H30.65320.07610.59110.091*
N50.8406 (2)0.16564 (13)0.57455 (13)0.0658 (5)
C20.8316 (2)0.09943 (17)0.59504 (16)0.0596 (6)
C40.7147 (2)0.03782 (16)0.58914 (17)0.0668 (6)
C50.8282 (2)0.07584 (14)0.57999 (14)0.0555 (5)
C60.9311 (2)0.02398 (15)0.57896 (15)0.0585 (6)
H61.00300.05060.57270.070*
N60.93433 (16)0.28871 (10)0.33661 (12)0.0538 (4)
H6A1.00860.25450.35900.065*
N70.79767 (16)0.16933 (10)0.31325 (12)0.0503 (4)
H70.87420.14680.36670.060*
N80.67626 (16)0.29829 (10)0.24472 (12)0.0491 (4)
H80.67590.34110.21010.059*
C70.80155 (19)0.25245 (12)0.29824 (14)0.0464 (5)
C80.9677 (2)0.37724 (13)0.34492 (14)0.0539 (5)
C90.8938 (3)0.43773 (15)0.3642 (2)0.0768 (7)
H90.81840.42180.37320.092*
C100.9323 (4)0.52263 (18)0.3700 (2)0.1001 (10)
H100.88060.56390.38110.120*
C111.0463 (4)0.5467 (2)0.3594 (2)0.1051 (12)
H111.07180.60380.36320.126*
C121.1207 (3)0.4857 (2)0.3434 (2)0.0959 (10)
H121.19900.50150.33740.115*
C131.0833 (2)0.40133 (17)0.33588 (16)0.0702 (7)
H131.13560.36050.32470.084*
C140.67503 (19)0.11513 (11)0.24655 (15)0.0468 (5)
C150.6368 (3)0.05200 (14)0.28837 (19)0.0765 (7)
H150.68960.04520.35940.092*
C160.5197 (4)0.00143 (18)0.2246 (2)0.1072 (11)
H160.49340.04460.25260.129*
C170.4422 (3)0.00873 (17)0.1204 (2)0.0877 (8)
H170.36280.02730.07760.105*
C180.4805 (2)0.07121 (15)0.07889 (18)0.0666 (6)
H180.42690.07810.00780.080*
C190.5977 (2)0.12417 (13)0.14139 (15)0.0535 (5)
H190.62500.16620.11270.064*
C200.54307 (19)0.28099 (11)0.24114 (14)0.0459 (5)
C210.5506 (2)0.26333 (14)0.33038 (16)0.0584 (5)
H210.64230.26160.39310.070*
C220.4205 (3)0.24817 (15)0.3260 (2)0.0725 (6)
H220.42440.23560.38580.087*
C230.2860 (3)0.25168 (17)0.2335 (2)0.0795 (7)
H230.19880.24110.23080.095*
C240.2785 (2)0.27057 (17)0.1450 (2)0.0760 (7)
H240.18640.27350.08260.091*
C250.4079 (2)0.28527 (14)0.14842 (16)0.0605 (6)
H250.40350.29800.08840.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0549 (9)0.0732 (11)0.0938 (12)0.0013 (8)0.0430 (8)0.0117 (9)
O40.0486 (9)0.0987 (13)0.1444 (16)0.0064 (8)0.0541 (10)0.0593 (12)
O70.1289 (16)0.0814 (12)0.1126 (14)0.0391 (11)0.0908 (13)0.0146 (10)
O80.0851 (12)0.0926 (14)0.1211 (15)0.0113 (10)0.0675 (12)0.0081 (11)
N10.0447 (9)0.0748 (13)0.0567 (10)0.0156 (8)0.0290 (8)0.0017 (9)
N30.0438 (9)0.0791 (14)0.1104 (16)0.0068 (9)0.0462 (10)0.0360 (11)
N50.0622 (11)0.0797 (14)0.0520 (11)0.0232 (10)0.0293 (9)0.0050 (9)
C20.0385 (10)0.0779 (16)0.0564 (13)0.0058 (10)0.0224 (9)0.0146 (12)
C40.0348 (10)0.0810 (17)0.0710 (14)0.0039 (10)0.0206 (10)0.0295 (12)
C50.0441 (10)0.0706 (15)0.0443 (11)0.0153 (10)0.0196 (9)0.0054 (10)
C60.0468 (11)0.0790 (16)0.0500 (12)0.0149 (10)0.0270 (9)0.0049 (11)
N60.0370 (8)0.0558 (10)0.0650 (10)0.0021 (7)0.0260 (8)0.0019 (8)
N70.0370 (8)0.0462 (9)0.0559 (10)0.0036 (7)0.0182 (7)0.0055 (7)
N80.0393 (8)0.0468 (9)0.0625 (10)0.0031 (7)0.0289 (7)0.0130 (8)
C70.0377 (10)0.0504 (12)0.0524 (11)0.0005 (8)0.0257 (8)0.0006 (9)
C80.0458 (10)0.0578 (13)0.0475 (11)0.0093 (9)0.0191 (9)0.0011 (9)
C90.0752 (15)0.0629 (16)0.0913 (18)0.0108 (12)0.0452 (14)0.0139 (13)
C100.104 (2)0.0608 (17)0.101 (2)0.0072 (16)0.0347 (18)0.0097 (15)
C110.105 (2)0.070 (2)0.0763 (19)0.0331 (18)0.0098 (17)0.0112 (15)
C120.0807 (19)0.105 (2)0.0703 (18)0.0443 (18)0.0218 (15)0.0132 (16)
C130.0525 (12)0.0899 (18)0.0590 (13)0.0203 (12)0.0249 (10)0.0025 (12)
C140.0392 (9)0.0431 (11)0.0566 (12)0.0040 (8)0.0256 (9)0.0000 (9)
C150.0956 (18)0.0578 (14)0.0655 (15)0.0198 (13)0.0378 (13)0.0029 (11)
C160.137 (3)0.081 (2)0.092 (2)0.0555 (19)0.057 (2)0.0047 (16)
C170.0882 (18)0.0767 (18)0.088 (2)0.0355 (14)0.0420 (16)0.0208 (14)
C180.0613 (13)0.0670 (15)0.0630 (14)0.0035 (11)0.0288 (11)0.0089 (11)
C190.0505 (11)0.0527 (12)0.0600 (13)0.0007 (9)0.0321 (10)0.0009 (10)
C200.0417 (10)0.0421 (11)0.0577 (12)0.0052 (8)0.0299 (9)0.0059 (9)
C210.0543 (12)0.0613 (13)0.0646 (13)0.0073 (10)0.0359 (11)0.0101 (10)
C220.0781 (16)0.0782 (16)0.0897 (17)0.0069 (13)0.0643 (15)0.0110 (13)
C230.0579 (14)0.0906 (18)0.112 (2)0.0022 (12)0.0608 (16)0.0005 (15)
C240.0425 (11)0.1013 (19)0.0818 (17)0.0049 (11)0.0329 (11)0.0025 (14)
C250.0440 (11)0.0753 (15)0.0620 (13)0.0082 (10)0.0291 (10)0.0074 (11)
Geometric parameters (Å, º) top
O2—C21.231 (3)C11—C121.356 (4)
O4—C41.234 (2)C11—H110.9300
O7—N51.224 (2)C12—C131.369 (4)
O8—N51.233 (2)C12—H120.9300
N1—C61.322 (3)C13—H130.9300
N1—C21.362 (3)C14—C151.367 (3)
N3—C41.371 (3)C14—C191.375 (3)
N3—C21.379 (3)C15—C161.376 (3)
N3—H30.8600C15—H150.9300
N5—C51.422 (3)C16—C171.364 (4)
C4—C51.434 (3)C16—H160.9300
C5—C61.380 (3)C17—C181.356 (3)
C6—H60.9300C17—H170.9300
N6—C71.333 (2)C18—C191.368 (3)
N6—C81.422 (2)C18—H180.9300
N6—H6A0.8600C19—H190.9300
N7—C71.330 (2)C20—C251.373 (3)
N7—C141.425 (2)C20—C211.374 (3)
N7—H70.8600C21—C221.383 (3)
N8—C71.337 (2)C21—H210.9300
N8—C201.428 (2)C22—C231.368 (3)
N8—H80.8600C22—H220.9300
C8—C91.373 (3)C23—C241.367 (3)
C8—C131.378 (3)C23—H230.9300
C9—C101.383 (4)C24—C251.382 (3)
C9—H90.9300C24—H240.9300
C10—C111.375 (5)C25—H250.9300
C10—H100.9300
C6—N1—C2117.20 (18)C11—C12—C13121.5 (3)
C4—N3—C2127.8 (2)C11—C12—H12119.2
C4—N3—H3116.1C13—C12—H12119.2
C2—N3—H3116.1C12—C13—C8119.7 (3)
O7—N5—O8121.2 (2)C12—C13—H13120.2
O7—N5—C5119.5 (2)C8—C13—H13120.2
O8—N5—C5119.33 (18)C15—C14—C19119.88 (18)
O2—C2—N1122.85 (19)C15—C14—N7119.08 (18)
O2—C2—N3119.2 (2)C19—C14—N7121.02 (17)
N1—C2—N3117.9 (2)C14—C15—C16119.6 (2)
O4—C4—N3119.4 (2)C14—C15—H15120.2
O4—C4—C5129.0 (2)C16—C15—H15120.2
N3—C4—C5111.65 (18)C17—C16—C15120.2 (2)
C6—C5—N5118.7 (2)C17—C16—H16119.9
C6—C5—C4119.1 (2)C15—C16—H16119.9
N5—C5—C4122.10 (18)C18—C17—C16120.2 (2)
N1—C6—C5126.0 (2)C18—C17—H17119.9
N1—C6—H6117.0C16—C17—H17119.9
C5—C6—H6117.0C17—C18—C19120.2 (2)
C7—N6—C8127.70 (17)C17—C18—H18119.9
C7—N6—H6A116.1C19—C18—H18119.9
C8—N6—H6A116.1C18—C19—C14120.0 (2)
C7—N7—C14124.30 (15)C18—C19—H19120.0
C7—N7—H7117.8C14—C19—H19120.0
C14—N7—H7117.8C25—C20—C21120.68 (18)
C7—N8—C20124.48 (15)C25—C20—N8119.28 (18)
C7—N8—H8117.8C21—C20—N8119.99 (17)
C20—N8—H8117.8C20—C21—C22119.4 (2)
N7—C7—N6118.00 (16)C20—C21—H21120.3
N7—C7—N8121.24 (16)C22—C21—H21120.3
N6—C7—N8120.75 (17)C23—C22—C21119.9 (2)
C9—C8—C13119.7 (2)C23—C22—H22120.1
C9—C8—N6123.18 (19)C21—C22—H22120.1
C13—C8—N6117.1 (2)C24—C23—C22120.7 (2)
C8—C9—C10119.4 (3)C24—C23—H23119.7
C8—C9—H9120.3C22—C23—H23119.7
C10—C9—H9120.3C23—C24—C25119.9 (2)
C11—C10—C9120.7 (3)C23—C24—H24120.0
C11—C10—H10119.6C25—C24—H24120.0
C9—C10—H10119.6C20—C25—C24119.5 (2)
C12—C11—C10118.9 (3)C20—C25—H25120.3
C12—C11—H11120.5C24—C25—H25120.3
C10—C11—H11120.5
C6—N1—C2—O2176.90 (19)C8—C9—C10—C111.8 (4)
C6—N1—C2—N32.8 (3)C9—C10—C11—C120.1 (4)
C4—N3—C2—O2173.4 (2)C10—C11—C12—C131.1 (4)
C4—N3—C2—N16.2 (3)C11—C12—C13—C80.2 (4)
C2—N3—C4—O4174.6 (2)C9—C8—C13—C121.7 (3)
C2—N3—C4—C55.8 (3)N6—C8—C13—C12179.87 (19)
O7—N5—C5—C6169.02 (19)C7—N7—C14—C15141.8 (2)
O8—N5—C5—C612.0 (3)C7—N7—C14—C1939.8 (3)
O7—N5—C5—C49.4 (3)C19—C14—C15—C160.8 (4)
O8—N5—C5—C4169.6 (2)N7—C14—C15—C16179.2 (2)
O4—C4—C5—C6178.0 (2)C14—C15—C16—C170.2 (5)
N3—C4—C5—C62.4 (3)C15—C16—C17—C180.4 (5)
O4—C4—C5—N50.4 (3)C16—C17—C18—C190.3 (4)
N3—C4—C5—N5179.21 (18)C17—C18—C19—C141.3 (3)
C2—N1—C6—C50.1 (3)C15—C14—C19—C181.5 (3)
N5—C5—C6—N1178.24 (18)N7—C14—C19—C18179.85 (18)
C4—C5—C6—N10.2 (3)C7—N8—C20—C25136.65 (19)
C14—N7—C7—N6152.77 (18)C7—N8—C20—C2145.7 (3)
C14—N7—C7—N826.0 (3)C25—C20—C21—C221.2 (3)
C8—N6—C7—N7168.86 (18)N8—C20—C21—C22178.88 (19)
C8—N6—C7—N812.4 (3)C20—C21—C22—C230.6 (4)
C20—N8—C7—N731.5 (3)C21—C22—C23—C240.4 (4)
C20—N8—C7—N6149.75 (18)C22—C23—C24—C250.8 (4)
C7—N6—C8—C934.2 (3)C21—C20—C25—C240.8 (3)
C7—N6—C8—C13147.7 (2)N8—C20—C25—C24178.5 (2)
C13—C8—C9—C102.7 (3)C23—C24—C25—C200.2 (4)
N6—C8—C9—C10179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O2i0.861.942.794 (2)174
N7—H7···N1i0.862.212.934 (2)142
N8—H8···O4ii0.862.052.887 (2)163
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18N3+·C4H2N3O4
Mr444.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.7495 (4), 15.6892 (7), 15.5624 (7)
β (°) 123.456 (3)
V3)2189.74 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.20 × 0.12
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.822, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
47807, 5534, 2650
Rint0.086
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 0.99
No. of reflections5534
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O2i0.861.942.794 (2)173.5
N7—H7···N1i0.862.212.934 (2)142.2
N8—H8···O4ii0.862.052.887 (2)162.9
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/58309/2004

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKemme, A., Rutkis, M. & Eiduss, J. (1988). Latv. PSR Zinat. Akad. Vestis Kim. Ser. 5, 595–601.  Google Scholar
First citationKlement, U., Range, K.-J., Hayessen, R. & Heckmann, K.-D. (1995). Z. Kristallogr. 220, 611.  CrossRef Google Scholar
First citationLargent, B. L., Wikström, H., Gundlach, A. L. & Snyder, S. H. (1987). Mol. Pharmacol. 32, 772–784.  CAS PubMed Web of Science Google Scholar
First citationPereira Silva, P. S., Cardoso, C., Ramos Silva, M. & Paixão, J. A. (2007). Acta Cryst. E63, o501–o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPereira Silva, P. S., Paixão, J. A., Ramos Silva, M. & Matos Beja, A. (2006). Acta Cryst. E62, o3073–o3075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007a). Acta Cryst. E63, o2243–o2245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007b). Acta Cryst. E63, o2524–o2526.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPettier, P. R. & Byrn, S. R. (1982). J. Org. Chem. 47, 4671–4676.  Google Scholar
First citationPuccetti, G., Perigaud, A., Badan, J., Ledoux, I. & Zyss, J. (1993). J. Opt. Soc. Am. B, 10, 733–744.  CrossRef CAS Google Scholar
First citationRao, T. S., Rando, R. F., Huffman, J. H. & Revankar, G. R. (1995). Nucleosides Nucleotides, 14, 1997–2008.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, E., Sonders, M., Quarum, M., McLean, S., Pou, S. & Keana, J. F. W. (1986). Proc. Natl Acad. Sci. USA, 83, 8784–8788.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYouping, H., Genbo, S., Bochang, W. & Rihong, J. (1992). J. Cryst. Growth, 119, 393–398.  CrossRef Google Scholar
First citationZyss, J., Pecaut, J., Levy, J. P. & Masse, R. (1993). Acta Cryst. B49, 334–342.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1082-o1083
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds