metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m848-m849

Bis(S-benzyl­iso­thio­uronium) tetra­chloridozincate(II)

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Physics, PSG College of Technology, Coimbatore 641 004, India, cDepartment of Physics, PSG College of Arts and Science, Coimbatore 641 101, India, and dLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 5 May 2008; accepted 20 May 2008; online 30 May 2008)

The asymmetric unit of the title compound, (C8H11N2S)2[ZnCl4], contains two S-benzyl­isothio­uronium cations which differ in the C—C—S—C torsion angle [165.3 (2) and 81.9 (2)°] and a tetrahedral tetra­chloridozincate anion. The crystal structure is stabilized by N—H⋯Cl, C—H⋯Cl and C—H⋯S inter­actions.

Related literature

For related literature, see: Hemalatha et al. (2006[Hemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cryst. Res. Tech. 41, 775-779.]); Zhang et al. (1994[Zhang, H. W., Batra, A. K. & Lal, R. B. (1994). J. Cryst. Growth. 137, 141-145.]); Barker & Powell (1998[Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019-2021.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H11N2S)2[ZnCl4]

  • Mr = 541.67

  • Monoclinic, P 21 /c

  • a = 15.2135 (11) Å

  • b = 6.4475 (5) Å

  • c = 23.9277 (18) Å

  • β = 95.368 (1)°

  • V = 2336.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 293 (2) K

  • 0.27 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 25129 measured reflections

  • 5481 independent reflections

  • 4986 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.08

  • 5481 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cl1—Zn1 2.2792 (5)
Cl2—Zn1 2.2650 (5)
Cl3—Zn1 2.2718 (5)
Cl4—Zn1 2.2589 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3 0.86 2.68 3.372 (2) 139
N1—H1B⋯Cl2i 0.86 2.45 3.255 (2) 157
N2—H2A⋯Cl4 0.86 2.53 3.219 (2) 138
N2—H2B⋯Cl3ii 0.86 2.62 3.262 (2) 132
N3—H3A⋯Cl1iii 0.86 2.72 3.469 (2) 147
N3—H3A⋯Cl4iii 0.86 2.65 3.244 (2) 128
N3—H3B⋯Cl1iv 0.86 2.44 3.283 (2) 166
N4—H4A⋯Cl1iii 0.86 2.49 3.290 (2) 156
N4—H4B⋯Cl2i 0.86 2.62 3.447 (2) 163
C15—H15A⋯S1 0.97 2.87 3.591 (2) 132
C15—H15A⋯Cl2v 0.97 2.77 3.556 (2) 139
C15—H15B⋯Cl2i 0.97 2.65 3.594 (2) 164
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z; (iii) x-1, y, z; (iv) x-1, y+1, z; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Most organic nonlinear optical (NLO) crystals have usually poor mechanical and thermal properties, and are susceptible to damage during processing. It is difficult to grow large optical quality crystals of these materials for device applications (Zhang et al., 1994). For further enhancement of NLO property many efforts have been made on developing new semiorganic NLO materials. The title compound is one of the new metalorganic nonlinear optical crystals. It combines the advantages of both organic and inorganic materials.

The C—N, S—C bond lengths and C—S—C and N—C—N bond angles are comparable with the similar structure reported earlier (Barker & Powell, 1998). There is a difference in the torsion angles C6—C7—S1—C8 [165.3 (2)°] and C14—C15—S2—C16 [81.9 (2)°] in the two molecules which indicates a difference in the conformation of the two molecules in the asymmetric unit.

The crystal structure (Figs. 2 and 3) is stabilized by N—H···Cl, C—H···Cl and C—H···S interactions.

Related literature top

For related literature, see: Hemalatha et al. (2006); Zhang et al.(1994); Barker & Powell (1998).

Experimental top

First S-benzylisothiouronium chloride (SBTC) was synthesized as discussed in an earlier report (Hemalatha et al., 2006). The solutions of SBTC (5 g m) and zinc chloride (1 g m) were prepared separately in minimum amount of water. Then the solutions were mixed together and stirred for 1 hr at 45°C. The resulting complex was filtered and thoroughly washed with distilled water. The product was recrystallized repeatedly from 0.2 M hydrochloric solution to grow transparent and good quality single crystals for NLO applications. Needle shape crystals were obtained from the saturated solution (with water) of the title compound by slow evaporation technique at room temperature.

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å or d(N—H) = 0.86 Å Uiso=1.2Ueq (C,N) and 0.97 Å, Uiso = 1.2Ueq (C) for CH2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound showing N—H···Cl interactions viewed down c axis.
[Figure 3] Fig. 3. The molecular packing of the title compound showing C—H···Cl interactions viewed down c axis.
Bis(S-benzylisothiouronium) tetrachloridozincate(II) top
Crystal data top
(C8H11N2S)2[ZnCl4]F(000) = 1104
Mr = 541.67Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2794 reflections
a = 15.2135 (11) Åθ = 1.3–25.0°
b = 6.4475 (5) ŵ = 1.70 mm1
c = 23.9277 (18) ÅT = 293 K
β = 95.368 (1)°Needle, colorless
V = 2336.8 (3) Å30.27 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4986 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.0°, θmin = 1.3°
ω scansh = 2020
25129 measured reflectionsk = 88
5481 independent reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.0433P]
where P = (Fo2 + 2Fc2)/3
5481 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
(C8H11N2S)2[ZnCl4]V = 2336.8 (3) Å3
Mr = 541.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2135 (11) ŵ = 1.70 mm1
b = 6.4475 (5) ÅT = 293 K
c = 23.9277 (18) Å0.27 × 0.23 × 0.21 mm
β = 95.368 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4986 reflections with I > 2σ(I)
25129 measured reflectionsRint = 0.026
5481 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
5481 reflectionsΔρmin = 0.32 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38843 (3)0.61059 (12)0.36896 (3)0.06677 (19)
N10.42614 (13)0.2947 (3)0.43326 (8)0.0562 (5)
H1A0.45890.21330.45470.067*
H1B0.37090.26760.42580.067*
C10.36865 (17)1.0458 (4)0.28381 (11)0.0598 (6)
H10.37741.11790.31750.072*
C20.31899 (18)1.1338 (5)0.23884 (15)0.0783 (8)
H20.29491.26520.24230.094*
C30.3052 (2)1.0311 (7)0.19011 (14)0.0869 (10)
H30.27181.09200.16000.104*
C40.3395 (2)0.8398 (7)0.18442 (11)0.0867 (10)
H40.32930.76930.15050.104*
C50.39016 (18)0.7482 (4)0.22921 (12)0.0663 (7)
H50.41370.61650.22520.080*
C60.40541 (13)0.8523 (4)0.27928 (9)0.0475 (5)
C70.46069 (15)0.7581 (4)0.32779 (11)0.0664 (7)
H7A0.49030.86610.35060.080*
H7B0.50520.66800.31430.080*
C80.46009 (12)0.4585 (3)0.41203 (8)0.0399 (4)
S20.06186 (3)0.66804 (7)0.41032 (2)0.04038 (11)
N20.54328 (12)0.5038 (3)0.42243 (9)0.0555 (5)
H2A0.57720.42460.44380.067*
H2B0.56440.61300.40790.067*
C90.15114 (15)0.6634 (4)0.27656 (10)0.0578 (6)
H90.17420.79170.28800.069*
C100.13285 (18)0.6205 (6)0.22003 (11)0.0757 (8)
H100.14420.72030.19360.091*
C110.09845 (18)0.4338 (5)0.20262 (11)0.0743 (8)
H110.08590.40750.16450.089*
C120.08244 (17)0.2855 (5)0.24096 (10)0.0651 (7)
H120.05880.15830.22900.078*
C130.10135 (14)0.3240 (4)0.29755 (9)0.0505 (5)
H130.09140.22130.32350.061*
C140.13496 (11)0.5144 (3)0.31602 (8)0.0395 (4)
C150.15495 (11)0.5601 (3)0.37715 (8)0.0377 (4)
H15A0.20380.65720.38180.045*
H15B0.17370.43300.39640.045*
C160.00143 (12)0.4549 (3)0.42524 (8)0.0373 (4)
N30.08381 (12)0.4941 (3)0.43308 (8)0.0527 (4)
H3A0.11800.39530.44180.063*
H3B0.10380.61870.42950.063*
N40.03000 (12)0.2657 (3)0.43054 (8)0.0519 (4)
H4A0.00360.16580.43920.062*
H4B0.08420.24150.42530.062*
Cl10.85432 (4)0.02098 (8)0.44408 (3)0.05782 (15)
Cl20.76342 (3)0.05687 (7)0.57924 (2)0.04173 (11)
Cl30.60408 (3)0.01885 (8)0.44970 (3)0.05317 (14)
Cl40.73327 (3)0.42677 (7)0.49034 (2)0.04099 (11)
Zn10.738101 (13)0.07662 (3)0.491654 (9)0.03552 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0303 (2)0.0860 (4)0.0846 (4)0.0098 (3)0.0085 (2)0.0446 (4)
N10.0452 (10)0.0590 (11)0.0640 (12)0.0027 (8)0.0029 (8)0.0212 (9)
C10.0585 (14)0.0609 (14)0.0607 (14)0.0017 (11)0.0088 (11)0.0033 (11)
C20.0582 (15)0.0761 (18)0.101 (2)0.0120 (14)0.0101 (15)0.0311 (18)
C30.0568 (16)0.128 (3)0.073 (2)0.0069 (18)0.0079 (14)0.039 (2)
C40.079 (2)0.135 (3)0.0459 (14)0.027 (2)0.0053 (13)0.0046 (17)
C50.0617 (15)0.0708 (16)0.0684 (16)0.0033 (12)0.0167 (12)0.0063 (13)
C60.0359 (9)0.0567 (12)0.0498 (11)0.0044 (9)0.0043 (8)0.0124 (10)
C70.0423 (12)0.0819 (18)0.0735 (16)0.0119 (11)0.0031 (11)0.0342 (13)
C80.0349 (9)0.0424 (10)0.0426 (10)0.0044 (7)0.0041 (7)0.0031 (8)
S20.0369 (2)0.0350 (2)0.0500 (3)0.00065 (18)0.00816 (19)0.00128 (19)
N20.0386 (9)0.0523 (10)0.0724 (13)0.0025 (8)0.0125 (8)0.0143 (9)
C90.0515 (12)0.0654 (14)0.0565 (13)0.0130 (11)0.0048 (10)0.0116 (11)
C100.0635 (15)0.113 (2)0.0521 (14)0.0118 (16)0.0110 (12)0.0252 (15)
C110.0585 (15)0.123 (3)0.0408 (12)0.0074 (16)0.0039 (11)0.0090 (14)
C120.0599 (14)0.0816 (17)0.0530 (13)0.0095 (13)0.0019 (11)0.0212 (12)
C130.0502 (12)0.0544 (12)0.0466 (11)0.0072 (10)0.0025 (9)0.0054 (9)
C140.0277 (8)0.0497 (10)0.0409 (10)0.0010 (7)0.0021 (7)0.0001 (8)
C150.0285 (8)0.0400 (9)0.0442 (10)0.0021 (7)0.0004 (7)0.0029 (7)
C160.0372 (9)0.0397 (9)0.0351 (9)0.0016 (7)0.0040 (7)0.0021 (7)
N30.0406 (9)0.0461 (9)0.0741 (12)0.0004 (7)0.0188 (8)0.0060 (9)
N40.0483 (10)0.0402 (9)0.0687 (12)0.0002 (7)0.0130 (9)0.0119 (8)
Cl10.0586 (3)0.0431 (3)0.0774 (4)0.0024 (2)0.0365 (3)0.0026 (2)
Cl20.0459 (2)0.0367 (2)0.0417 (2)0.00012 (18)0.00090 (18)0.00612 (17)
Cl30.0417 (3)0.0453 (3)0.0688 (3)0.0069 (2)0.0143 (2)0.0068 (2)
Cl40.0366 (2)0.0346 (2)0.0508 (3)0.00228 (16)0.00096 (19)0.00113 (18)
Zn10.03067 (11)0.03633 (12)0.03951 (12)0.00107 (8)0.00309 (8)0.00358 (8)
Geometric parameters (Å, º) top
S1—C81.732 (2)C9—C101.383 (4)
S1—C71.813 (2)C9—C141.385 (3)
N1—C81.300 (3)C9—H90.9300
N1—H1A0.8600C10—C111.362 (4)
N1—H1B0.8600C10—H100.9300
C1—C61.376 (3)C11—C121.363 (4)
C1—C21.378 (4)C11—H110.9300
C1—H10.9300C12—C131.380 (3)
C2—C31.340 (5)C12—H120.9300
C2—H20.9300C13—C141.386 (3)
C3—C41.351 (5)C13—H130.9300
C3—H30.9300C14—C151.495 (3)
C4—C51.391 (4)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.374 (3)C16—N31.309 (2)
C5—H50.9300C16—N41.312 (2)
C6—C71.497 (3)N3—H3A0.8600
C7—H7A0.9700N3—H3B0.8600
C7—H7B0.9700N4—H4A0.8600
C8—N21.300 (3)N4—H4B0.8600
S2—C161.734 (2)Cl1—Zn12.2792 (5)
S2—C151.825 (2)Cl2—Zn12.2650 (5)
N2—H2A0.8600Cl3—Zn12.2718 (5)
N2—H2B0.8600Cl4—Zn12.2589 (5)
C8—S1—C7103.9 (1)C14—C9—H9120.1
C8—N1—H1A120.0C11—C10—C9120.8 (3)
C8—N1—H1B120.0C11—C10—H10119.6
H1A—N1—H1B120.0C9—C10—H10119.6
C6—C1—C2120.6 (3)C10—C11—C12120.1 (2)
C6—C1—H1119.7C10—C11—H11119.9
C2—C1—H1119.7C12—C11—H11119.9
C3—C2—C1120.4 (3)C11—C12—C13120.0 (2)
C3—C2—H2119.8C11—C12—H12120.0
C1—C2—H2119.8C13—C12—H12120.0
C2—C3—C4120.6 (3)C12—C13—C14120.6 (2)
C2—C3—H3119.7C12—C13—H13119.7
C4—C3—H3119.7C14—C13—H13119.7
C3—C4—C5120.1 (3)C9—C14—C13118.7 (2)
C3—C4—H4120.0C9—C14—C15119.82 (19)
C5—C4—H4120.0C13—C14—C15121.44 (18)
C6—C5—C4120.0 (3)C14—C15—S2113.93 (12)
C6—C5—H5120.0C14—C15—H15A108.8
C4—C5—H5120.0S2—C15—H15A108.8
C5—C6—C1118.3 (2)C14—C15—H15B108.8
C5—C6—C7121.0 (2)S2—C15—H15B108.8
C1—C6—C7120.6 (2)H15A—C15—H15B107.7
C6—C7—S1108.00 (15)N3—C16—N4120.7 (2)
C6—C7—H7A110.1N3—C16—S2115.7 (2)
S1—C7—H7A110.1N4—C16—S2123.5 (2)
C6—C7—H7B110.1C16—N3—H3A120.0
S1—C7—H7B110.1C16—N3—H3B120.0
H7A—C7—H7B108.4H3A—N3—H3B120.0
N1—C8—N2121.5 (2)C16—N4—H4A120.0
N1—C8—S1116.2 (2)C16—N4—H4B120.0
N2—C8—S1122.3 (2)H4A—N4—H4B120.0
C16—S2—C15104.82 (9)Cl4—Zn1—Cl2113.28 (2)
C8—N2—H2A120.0Cl4—Zn1—Cl3103.76 (2)
C8—N2—H2B120.0Cl2—Zn1—Cl3111.95 (2)
H2A—N2—H2B120.0Cl4—Zn1—Cl1107.14 (2)
C10—C9—C14119.7 (2)Cl2—Zn1—Cl1106.53 (2)
C10—C9—H9120.1Cl3—Zn1—Cl1114.24 (3)
C6—C1—C2—C30.5 (4)C14—C9—C10—C110.5 (4)
C1—C2—C3—C40.2 (5)C9—C10—C11—C120.7 (5)
C2—C3—C4—C50.5 (5)C10—C11—C12—C130.2 (4)
C3—C4—C5—C60.1 (4)C11—C12—C13—C141.3 (4)
C4—C5—C6—C10.8 (4)C10—C9—C14—C130.6 (3)
C4—C5—C6—C7179.1 (2)C10—C9—C14—C15179.8 (2)
C2—C1—C6—C51.0 (4)C12—C13—C14—C91.5 (3)
C2—C1—C6—C7178.9 (2)C12—C13—C14—C15179.3 (2)
C5—C6—C7—S189.8 (2)C9—C14—C15—S291.8 (2)
C1—C6—C7—S190.3 (2)C13—C14—C15—S289.0 (2)
C8—S1—C7—C6165.34 (19)C16—S2—C15—C1481.90 (15)
C7—S1—C8—N1159.52 (19)C15—S2—C16—N3159.78 (16)
C7—S1—C8—N220.0 (2)C15—S2—C16—N422.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.862.683.372 (2)139
N1—H1B···Cl2i0.862.453.255 (2)157
N2—H2A···Cl40.862.533.219 (2)138
N2—H2B···Cl3ii0.862.623.262 (2)132
N3—H3A···Cl1iii0.862.723.469 (2)147
N3—H3A···Cl4iii0.862.653.244 (2)128
N3—H3B···Cl1iv0.862.443.283 (2)166
N4—H4A···Cl1iii0.862.493.290 (2)156
N4—H4B···Cl2i0.862.623.447 (2)163
C15—H15A···S10.972.873.591 (2)132
C15—H15A···Cl2v0.972.773.556 (2)139
C15—H15B···Cl2i0.972.653.594 (2)164
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x1, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H11N2S)2[ZnCl4]
Mr541.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.2135 (11), 6.4475 (5), 23.9277 (18)
β (°) 95.368 (1)
V3)2336.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.27 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25129, 5481, 4986
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.08
No. of reflections5481
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Selected bond lengths (Å) top
S1—C81.732 (2)C16—N31.309 (2)
S1—C71.813 (2)C16—N41.312 (2)
N1—C81.300 (3)Cl1—Zn12.2792 (5)
C8—N21.300 (3)Cl2—Zn12.2650 (5)
S2—C161.734 (2)Cl3—Zn12.2718 (5)
S2—C151.825 (2)Cl4—Zn12.2589 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.862.683.372 (2)138.5
N1—H1B···Cl2i0.862.453.255 (2)156.6
N2—H2A···Cl40.862.533.219 (2)138.2
N2—H2B···Cl3ii0.862.623.262 (2)131.9
N3—H3A···Cl1iii0.862.723.469 (2)146.5
N3—H3A···Cl4iii0.862.653.244 (2)127.7
N3—H3B···Cl1iv0.862.443.283 (2)165.5
N4—H4A···Cl1iii0.862.493.290 (2)156.0
N4—H4B···Cl2i0.862.623.447 (2)162.5
C15—H15A···S10.972.873.591 (2)131.8
C15—H15A···Cl2v0.972.773.556 (2)138.7
C15—H15B···Cl2i0.972.653.594 (2)164.0
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x1, y+1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC-SAP) and the Department of Science & Technology (DST-FIST), Government of India, is acknowledged by DV for providing facilities to the department.

References

First citationBarker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cryst. Res. Tech. 41, 775–779.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. W., Batra, A. K. & Lal, R. B. (1994). J. Cryst. Growth. 137, 141–145.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m848-m849
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds