metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)­pyridinium] di­bromidodi­chloridodi­methyl­stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 May 2008; accepted 7 May 2008; online 10 May 2008)

The tin(IV) atom in the salt, (C7H11N2)2[SnBr2(CH3)2Cl2], lies on a center of inversion in a tetra­gonally compressed octa­hedron; the bromine atoms are disordered with the chlorine atoms, so that they appear to share the same site. The crystal structure is stabilized by N—H⋯Br hydrogen bonds.

Related literature

For the structure of bis­(4-dimethyl­amino­pyridinium) tetra­bromidodiphenyl­stannate(IV), see: Yap et al. (2008[Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[SnBr2(CH3)2Cl2]

  • Mr = 625.83

  • Triclinic, [P \overline 1]

  • a = 7.3573 (3) Å

  • b = 8.7717 (3) Å

  • c = 9.6644 (4) Å

  • α = 97.183 (3)°

  • β = 107.990 (3)°

  • γ = 90.052 (2)°

  • V = 588.04 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.72 mm−1

  • T = 100 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS;Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.385, Tmax = 0.538 (expected range = 0.353–0.493)

  • 4965 measured reflections

  • 2756 independent reflections

  • 1656 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.04

  • 2756 reflections

  • 122 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.225 (5)
Sn1—X1 2.690 (1)
Sn1—X2 2.6926 (8)
X is a disordered mixture of Cl and Br.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯X1 0.88 2.60 3.316 (5) 139
N1—H1⋯X2i 0.88 2.81 3.458 (6) 132
X is a disordered mixture of Cl and Br. Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Bis(4-methylaminopyridinium) tetrabromidodiphenylstannate is produced from the cleavage of the mixed alkyl/triarylstannate, cyclopentyltriphenyltin, by 4-dimethylaminopyridine hydrobromide perbromide (Yap et al., 2008). In principle, the salt can be synthesized from the reaction of 4-dimethylaminopyridine hydrobromide perbromide and diphenyltin dibromide. The possibility is borne out by reacting the organic reagent with dimethyltin dichloride to yield the title salt (Scheme I, Fig. 1). The SnIV atom of the stannate lies on a center-of-inversion in tetragonally compressed octahedron; the two indepedent bromine atom share the sames site as the two independent chlorine atoms.

Related literature top

For the structure of bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate, see: Yap et al. (2008).

Experimental top

Dimethyltin dichoride (2.20 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (3.62 g, 1 mmol) were heated in ethanol in an attempt to synthesize the bromodichloridodimethylstannate salt. Colorless crystals separated from it after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was similarly treated (N–H 0.88 Å; U(H) = 1.2 Ueq(N)).

The chlorine atoms are disordered with respect to the bromine atoms, so that the halogen site is occupied by both a chlorine and a bromine. Constraints were applied so that at each site, the atoms had the same coordinates and the same anisotropic displacement parameters. The occupancies refined to 0.4551 (15) for the Br1/Cl2 pair, and to 0.5449 (15) for the Br2/Cl1 pair. The final difference Fourier map had a large peak at 1 Å from Sn1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of [C7H11N]2 [SnBr2Cl2(CH3)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
Bis[4-(dimethylamino)pyridinium] dibromidodichloridodimethylstannate(IV) top
Crystal data top
(C7H11N2)2[SnBr2(CH3)2Cl2]Z = 1
Mr = 625.83F(000) = 306
Triclinic, P1Dx = 1.767 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3573 (3) ÅCell parameters from 1302 reflections
b = 8.7717 (3) Åθ = 2.3–23.1°
c = 9.6644 (4) ŵ = 4.72 mm1
α = 97.183 (3)°T = 100 K
β = 107.990 (3)°Prism, colorless
γ = 90.052 (2)°0.25 × 0.20 × 0.15 mm
V = 588.04 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS;Sheldrick, 1996)
h = 99
Tmin = 0.385, Tmax = 0.538k = 1111
4965 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
2756 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.82 e Å3
4 restraintsΔρmin = 1.14 e Å3
Crystal data top
(C7H11N2)2[SnBr2(CH3)2Cl2]γ = 90.052 (2)°
Mr = 625.83V = 588.04 (4) Å3
Triclinic, P1Z = 1
a = 7.3573 (3) ÅMo Kα radiation
b = 8.7717 (3) ŵ = 4.72 mm1
c = 9.6644 (4) ÅT = 100 K
α = 97.183 (3)°0.25 × 0.20 × 0.15 mm
β = 107.990 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(SADABS;Sheldrick, 1996)
1656 reflections with I > 2σ(I)
Tmin = 0.385, Tmax = 0.538Rint = 0.045
4965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.82 e Å3
2756 reflectionsΔρmin = 1.14 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.0414 (2)
Br10.50474 (16)0.50403 (11)0.77987 (11)0.0610 (3)0.4551 (15)
Br20.36593 (14)0.78543 (10)0.49452 (10)0.0588 (3)0.5449 (15)
Cl10.50474 (16)0.50403 (11)0.77987 (11)0.0610 (3)0.5449 (15)
Cl20.36593 (14)0.78543 (10)0.49452 (10)0.0588 (3)0.4551 (15)
N10.6576 (7)0.1602 (6)0.8588 (6)0.0552 (14)
H10.62050.22480.79380.066*
N20.8414 (7)0.1391 (6)1.1635 (6)0.0557 (14)
C10.2014 (7)0.4016 (6)0.4157 (6)0.0344 (12)
H1A0.20230.29040.41920.052*
H1B0.14320.42140.31420.052*
H1C0.12710.44950.47670.052*
C20.6816 (9)0.2092 (8)1.0006 (8)0.0581 (18)
H20.65710.31281.02900.070*
C30.7413 (9)0.1116 (7)1.1061 (7)0.0545 (16)
H30.75700.14801.20600.065*
C40.7793 (8)0.0433 (7)1.0650 (7)0.0443 (15)
C50.7486 (8)0.0875 (7)0.9140 (7)0.0488 (15)
H50.76980.19040.88050.059*
C60.6890 (9)0.0144 (8)0.8144 (7)0.0536 (16)
H60.66980.01830.71320.064*
C70.8687 (11)0.0920 (10)1.3200 (8)0.084 (3)
H7A0.98860.03051.36390.127*
H7B0.87400.18361.36950.127*
H7C0.76160.03051.33100.127*
C80.8809 (10)0.2972 (8)1.1236 (9)0.071 (2)
H8A0.76020.35601.07360.106*
H8B0.94980.34171.21240.106*
H8C0.95940.30081.05790.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0437 (4)0.0408 (3)0.0388 (4)0.0028 (3)0.0122 (3)0.0040 (3)
Br10.0938 (9)0.0501 (6)0.0460 (6)0.0082 (5)0.0319 (6)0.0062 (5)
Br20.0809 (7)0.0458 (5)0.0461 (6)0.0187 (5)0.0144 (5)0.0062 (4)
Cl10.0938 (9)0.0501 (6)0.0460 (6)0.0082 (5)0.0319 (6)0.0062 (5)
Cl20.0809 (7)0.0458 (5)0.0461 (6)0.0187 (5)0.0144 (5)0.0062 (4)
N10.050 (3)0.064 (4)0.052 (4)0.001 (3)0.012 (3)0.020 (3)
N20.048 (3)0.070 (4)0.050 (3)0.004 (3)0.012 (3)0.017 (3)
C10.032 (3)0.039 (3)0.040 (3)0.009 (2)0.019 (3)0.012 (3)
C20.050 (4)0.058 (4)0.064 (5)0.007 (3)0.016 (4)0.004 (4)
C30.048 (4)0.065 (4)0.048 (4)0.001 (3)0.016 (3)0.006 (3)
C40.031 (3)0.063 (4)0.037 (3)0.005 (3)0.008 (3)0.009 (3)
C50.047 (4)0.050 (3)0.047 (4)0.003 (3)0.013 (3)0.002 (3)
C60.054 (4)0.064 (4)0.042 (4)0.013 (3)0.016 (3)0.001 (3)
C70.075 (5)0.136 (7)0.043 (4)0.025 (5)0.013 (4)0.028 (5)
C80.071 (5)0.063 (5)0.079 (6)0.002 (4)0.016 (4)0.026 (4)
Geometric parameters (Å, º) top
Sn1—C1i2.225 (5)C1—H1C0.9800
Sn1—C12.225 (5)C2—C31.381 (8)
Sn1—Br12.690 (1)C2—H20.9500
Sn1—Cl1i2.690 (1)C3—C41.420 (9)
Sn1—Br1i2.690 (1)C3—H30.9500
Sn1—Br2i2.6926 (8)C4—C51.409 (9)
Sn1—Br22.6926 (8)C5—C61.369 (8)
Sn1—Cl2i2.6926 (8)C5—H50.9500
N1—C21.341 (9)C6—H60.9500
N1—C61.341 (9)C7—H7A0.9800
N1—H10.8800C7—H7B0.9800
N2—C41.324 (7)C7—H7C0.9800
N2—C81.446 (9)C8—H8A0.9800
N2—C71.467 (9)C8—H8B0.9800
C1—H1A0.9800C8—H8C0.9800
C1—H1B0.9800
C1i—Sn1—C1180.0Sn1—C1—H1A109.5
C1i—Sn1—Br188.38 (14)Sn1—C1—H1B109.5
C1—Sn1—Br191.62 (14)H1A—C1—H1B109.5
C1i—Sn1—Cl1i91.62 (14)Sn1—C1—H1C109.5
C1—Sn1—Cl1i88.38 (14)H1A—C1—H1C109.5
Br1—Sn1—Cl1i180.0H1B—C1—H1C109.5
C1i—Sn1—Br1i91.62 (14)N1—C2—C3121.1 (6)
C1—Sn1—Br1i88.38 (14)N1—C2—H2119.5
Br1—Sn1—Br1i180.0C3—C2—H2119.5
Cl1i—Sn1—Br1i0.0C2—C3—C4120.0 (6)
C1i—Sn1—Br2i89.83 (13)C2—C3—H3120.0
C1—Sn1—Br2i90.17 (13)C4—C3—H3120.0
Br1—Sn1—Br2i89.12 (3)N2—C4—C5122.5 (6)
Cl1i—Sn1—Br2i90.88 (3)N2—C4—C3121.6 (6)
Br1i—Sn1—Br2i90.88 (3)C5—C4—C3115.9 (6)
C1i—Sn1—Br290.17 (13)C6—C5—C4121.5 (6)
C1—Sn1—Br289.83 (13)C6—C5—H5119.2
Br1—Sn1—Br290.88 (3)C4—C5—H5119.2
Cl1i—Sn1—Br289.12 (3)N1—C6—C5120.4 (6)
Br1i—Sn1—Br289.12 (3)N1—C6—H6119.8
Br2i—Sn1—Br2180.0C5—C6—H6119.8
C1i—Sn1—Cl2i89.83 (13)N2—C7—H7A109.5
C1—Sn1—Cl2i90.17 (13)N2—C7—H7B109.5
Br1—Sn1—Cl2i89.12 (3)H7A—C7—H7B109.5
Cl1i—Sn1—Cl2i90.88 (3)N2—C7—H7C109.5
Br1i—Sn1—Cl2i90.88 (3)H7A—C7—H7C109.5
Br2i—Sn1—Cl2i0.000 (13)H7B—C7—H7C109.5
Br2—Sn1—Cl2i180.0N2—C8—H8A109.5
C2—N1—C6121.1 (6)N2—C8—H8B109.5
C2—N1—H1119.4H8A—C8—H8B109.5
C6—N1—H1119.4N2—C8—H8C109.5
C4—N2—C8122.3 (6)H8A—C8—H8C109.5
C4—N2—C7121.8 (6)H8B—C8—H8C109.5
C8—N2—C7115.9 (6)
C6—N1—C2—C30.6 (9)C2—C3—C4—N2178.3 (5)
N1—C2—C3—C40.3 (10)C2—C3—C4—C51.1 (8)
C8—N2—C4—C50.6 (9)N2—C4—C5—C6178.3 (6)
C7—N2—C4—C5178.7 (6)C3—C4—C5—C61.1 (9)
C8—N2—C4—C3180.0 (5)C2—N1—C6—C50.7 (9)
C7—N2—C4—C31.9 (9)C4—C5—C6—N10.2 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.603.316 (5)139
N1—H1···Br2i0.882.813.458 (6)132
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr2(CH3)2Cl2]
Mr625.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3573 (3), 8.7717 (3), 9.6644 (4)
α, β, γ (°)97.183 (3), 107.990 (3), 90.052 (2)
V3)588.04 (4)
Z1
Radiation typeMo Kα
µ (mm1)4.72
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS;Sheldrick, 1996)
Tmin, Tmax0.385, 0.538
No. of measured, independent and
observed [I > 2σ(I)] reflections
4965, 2756, 1656
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.04
No. of reflections2756
No. of parameters122
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Sn1—C12.225 (5)Sn1—Br22.6926 (8)
Sn1—Br12.690 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.882.603.316 (5)139
N1—H1···Br2i0.882.813.458 (6)132
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds