organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S)-4-(3,4-Di­chloro­phen­yl)-1′-methyl-4′-phenyl-3,4-di­hydro­naphthalene-2-spiro-3′-pyrrolidine-2′-spiro-1′′-ace­naphthyl­ene-1,2′′(2H,1′′H)-dione

aDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Physics, AMET University, Kanathur, Chennai, India, and cDepartment of Physics, St. Peter's Engineering College, Avadi, Chennai, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 7 May 2008; accepted 8 May 2008; online 17 May 2008)

In the title compound, C37H27Cl2NO2, the 3,4-dichloro­phenyl ring makes a dihedral angle of 46.66 (6)° with the phenyl ring. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions and the crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions. The C–C–C–C–C five-membered ring is planar, while the C–C–C–C–N five-membered ring adopts a half-chair conformation.

Related literature

For related lituerature, see: Sarala et al. (2006[Sarala, G., Kavitha, C. V., Mantelingu, K., Anandalwar, S. M., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Anal. Sci. 22, x241-x242.]); Ramesh et al. (2007[Ramesh, P., Murugavel, S., Pandi, A. S., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4851.]); Welch et al. (1984[Welch, W. M., Kraska, A. R., Sarges, R. & Koe, K. B. (1984). J. Med. Chem. 27, 1508-1510.]).

[Scheme 1]

Experimental

Crystal data
  • C37H27Cl2NO2

  • Mr = 588.50

  • Monoclinic, C 2/c

  • a = 39.6142 (12) Å

  • b = 8.3031 (2) Å

  • c = 18.1810 (5) Å

  • β = 101.135 (3)°

  • V = 5867.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.979

  • 67467 measured reflections

  • 8160 independent reflections

  • 5776 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.06

  • 8160 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2 0.97 2.49 3.045 (2) 116
C17—H17⋯O1 0.98 2.33 2.794 (2) 108
C32—H32⋯O2i 0.93 2.48 3.351 (3) 156
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound acts in the central nervous system as a serotonine uptake inhibitor. Another similar compound sertraline hydrochloride is a very effective antidepressant. It selectively blocks serotonine re-uptake and is used for the treatment of depression, as well as dependency and other anxiety-related disorders (Welch et al., 1984).

The geometric parameters in the title compound agree with the reported values of a similar structure (Sarala et al., 2006; Ramesh et al., 2007). The 3,4-dichlorophenyl ring makes a dihedral angle of 46.66 (6) ° with the 4-phenyl ring. The 3,4-dihydro-1(2H)-naphthalenone ring adopts half-chair conformation [torsion angles: C(7)—C(16)—C(11)—C(10) -3.61 (3) °, and C(7)—C(8)—C(9)—C(10) -58.20 (17) °].

The molecular structure is stabilized by weak intramolecular C—H···O interactions and the crystal packing is stabilized by weak intermolecular C—H···O interactions.

Related literature top

For related lituerature, see: Sarala et al. (2006); Ramesh et al. (2007); Welch et al. (1984).

Experimental top

1.0 mol of (E) -2-benzylidene-4-(3,4-dichlorophenyl)-3,4-dihydronaphthale-1 (2H)-one (1.0 g), 1.0 mol of acenaphthaquinoline (0.65 g) and 1.0 mol of sarcosine was refluxed in 10 ml of methanol for about 5.0 hrs. The solvent was removedand the crude solid was recrystallized from ethanol.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(4S)-4-(3,4-Dichlorophenyl)-1'-methyl-4'-phenyl-3,4-dihydro- naphthalene-2-spiro-3'-pyrrolidine-2'-spiro-1''-acenaphthylene-1,2''(2H,1''H)- dione top
Crystal data top
C37H27Cl2NO2F(000) = 2448
Mr = 588.50Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 39.6142 (12) Åθ = 2.0–25.5°
b = 8.3031 (2) ŵ = 0.26 mm1
c = 18.1810 (5) ÅT = 293 K
β = 101.135 (3)°Block, pale yellow
V = 5867.5 (3) Å30.3 × 0.2 × 0.2 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
8160 independent reflections
Radiation source: fine-focus sealed tube5776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 29.6°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 5454
Tmin = 0.976, Tmax = 0.979k = 1111
67467 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0658P)2 + 5.0424P]
where P = (Fo2 + 2Fc2)/3
8160 reflections(Δ/σ)max < 0.001
380 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C37H27Cl2NO2V = 5867.5 (3) Å3
Mr = 588.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 39.6142 (12) ŵ = 0.26 mm1
b = 8.3031 (2) ÅT = 293 K
c = 18.1810 (5) Å0.3 × 0.2 × 0.2 mm
β = 101.135 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
8160 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5776 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.979Rint = 0.033
67467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
8160 reflectionsΔρmin = 0.32 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.002080 (13)0.34019 (9)0.38789 (4)0.06938 (19)
Cl20.014144 (16)0.71550 (10)0.36697 (4)0.0841 (2)
O10.19815 (3)0.41995 (17)0.58966 (8)0.0475 (3)
O20.12583 (4)0.06851 (17)0.48514 (7)0.0512 (3)
C90.16950 (4)0.23492 (18)0.52002 (8)0.0299 (3)
C100.17115 (4)0.36502 (19)0.57873 (9)0.0333 (3)
C250.16332 (4)0.06301 (19)0.56048 (9)0.0333 (3)
C170.20508 (4)0.2125 (2)0.46665 (9)0.0346 (3)
H170.22260.24080.49590.042*
C10.08342 (4)0.4158 (2)0.48236 (9)0.0357 (3)
C70.10569 (4)0.3176 (2)0.52492 (9)0.0355 (3)
H70.09490.21160.53480.043*
N10.19450 (4)0.02695 (18)0.52975 (9)0.0425 (3)
C60.08905 (5)0.5788 (2)0.47013 (11)0.0469 (4)
H60.10740.62810.48620.056*
C80.14162 (4)0.2907 (2)0.47710 (9)0.0336 (3)
H8A0.13980.21090.43910.040*
H8B0.14920.39050.45140.040*
C180.21192 (4)0.3169 (2)0.39763 (9)0.0381 (4)
C260.12974 (4)0.0201 (2)0.54571 (10)0.0383 (4)
C20.05649 (4)0.3440 (2)0.45610 (9)0.0388 (4)
H20.05260.23410.46300.047*
C30.03528 (4)0.4344 (3)0.41954 (10)0.0434 (4)
C110.13780 (4)0.4193 (2)0.62382 (9)0.0365 (3)
C160.10692 (4)0.3935 (2)0.59997 (9)0.0385 (4)
C350.15689 (5)0.0661 (2)0.64538 (9)0.0398 (4)
C360.12327 (5)0.0156 (2)0.67380 (10)0.0442 (4)
C240.20754 (5)0.0320 (2)0.45465 (11)0.0432 (4)
H24A0.23110.00190.43660.052*
H24B0.19340.00370.41980.052*
C270.10569 (5)0.0354 (2)0.61808 (11)0.0454 (4)
C40.04084 (5)0.5976 (3)0.40924 (11)0.0494 (5)
C230.20506 (5)0.2687 (3)0.32921 (11)0.0517 (5)
H230.19580.16720.32460.062*
C50.06793 (5)0.6693 (3)0.43455 (12)0.0529 (5)
H50.07190.77920.42750.063*
C150.07627 (5)0.4379 (3)0.64733 (11)0.0572 (5)
H150.05540.42090.63220.069*
C190.22596 (5)0.4685 (3)0.40187 (13)0.0539 (5)
H190.23130.50300.44690.065*
C120.13751 (6)0.4898 (3)0.69397 (11)0.0521 (5)
H120.15810.50810.70980.062*
C310.10852 (7)0.0127 (3)0.75047 (12)0.0620 (6)
C340.17765 (6)0.1082 (2)0.69419 (11)0.0532 (5)
H340.20050.13720.67700.064*
C220.21188 (6)0.3698 (3)0.26740 (12)0.0648 (6)
H220.20730.33510.22170.078*
C140.07653 (7)0.5065 (4)0.71610 (12)0.0726 (7)
H140.05590.53570.74700.087*
C370.19281 (6)0.2006 (2)0.53935 (14)0.0607 (6)
H37A0.21550.24510.52630.091*
H37B0.18320.22580.59070.091*
H37C0.17860.24570.50740.091*
C130.10704 (7)0.5319 (3)0.73924 (12)0.0696 (7)
H130.10700.57790.78590.083*
C280.07225 (6)0.0877 (3)0.63682 (15)0.0686 (6)
H280.06030.12290.60060.082*
C320.13034 (9)0.0616 (3)0.79920 (12)0.0757 (8)
H320.12200.06320.85070.091*
C210.22524 (6)0.5203 (4)0.27320 (15)0.0713 (7)
H210.22960.58830.23180.086*
C200.23216 (7)0.5694 (3)0.34039 (16)0.0728 (7)
H200.24110.67170.34480.087*
C330.16333 (8)0.1062 (3)0.77166 (13)0.0709 (7)
H330.17710.13690.80530.085*
C300.07403 (8)0.0392 (4)0.76769 (16)0.0849 (9)
H300.06270.04180.81750.102*
C290.05687 (8)0.0856 (4)0.71354 (19)0.0918 (10)
H290.03400.11730.72760.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0432 (3)0.0965 (5)0.0761 (4)0.0129 (3)0.0307 (2)0.0009 (3)
Cl20.0595 (3)0.0979 (5)0.1025 (5)0.0085 (3)0.0344 (3)0.0410 (4)
O10.0376 (6)0.0514 (8)0.0557 (8)0.0082 (6)0.0145 (5)0.0118 (6)
O20.0620 (8)0.0522 (8)0.0423 (7)0.0176 (6)0.0172 (6)0.0053 (6)
C90.0268 (6)0.0317 (7)0.0319 (7)0.0013 (6)0.0077 (5)0.0011 (6)
C100.0334 (7)0.0320 (8)0.0362 (8)0.0021 (6)0.0108 (6)0.0002 (6)
C250.0366 (8)0.0317 (8)0.0331 (7)0.0021 (6)0.0102 (6)0.0006 (6)
C170.0280 (7)0.0380 (8)0.0377 (8)0.0003 (6)0.0058 (6)0.0020 (6)
C10.0268 (7)0.0431 (9)0.0378 (8)0.0014 (6)0.0071 (6)0.0029 (7)
C70.0273 (7)0.0400 (9)0.0399 (8)0.0017 (6)0.0082 (6)0.0047 (7)
N10.0428 (8)0.0347 (7)0.0488 (8)0.0066 (6)0.0065 (6)0.0001 (6)
C60.0383 (9)0.0485 (10)0.0573 (11)0.0094 (8)0.0178 (8)0.0096 (8)
C80.0276 (7)0.0396 (8)0.0344 (7)0.0010 (6)0.0083 (6)0.0016 (6)
C180.0279 (7)0.0455 (9)0.0389 (8)0.0036 (6)0.0013 (6)0.0006 (7)
C260.0429 (9)0.0324 (8)0.0406 (9)0.0075 (7)0.0103 (7)0.0020 (7)
C20.0313 (7)0.0447 (9)0.0410 (9)0.0037 (7)0.0082 (6)0.0004 (7)
C30.0280 (7)0.0638 (12)0.0392 (9)0.0030 (7)0.0089 (6)0.0001 (8)
C110.0386 (8)0.0358 (8)0.0352 (8)0.0032 (7)0.0080 (6)0.0018 (6)
C160.0336 (8)0.0457 (9)0.0356 (8)0.0050 (7)0.0055 (6)0.0045 (7)
C350.0531 (10)0.0342 (8)0.0339 (8)0.0060 (7)0.0132 (7)0.0014 (6)
C360.0578 (11)0.0364 (9)0.0358 (8)0.0069 (8)0.0029 (7)0.0044 (7)
C240.0397 (9)0.0416 (9)0.0458 (9)0.0068 (7)0.0020 (7)0.0038 (7)
C270.0452 (9)0.0426 (10)0.0452 (10)0.0057 (8)0.0012 (7)0.0057 (8)
C40.0348 (8)0.0651 (13)0.0491 (10)0.0040 (8)0.0103 (7)0.0153 (9)
C230.0545 (11)0.0560 (12)0.0442 (10)0.0072 (9)0.0084 (8)0.0038 (9)
C50.0462 (10)0.0489 (11)0.0652 (12)0.0041 (8)0.0146 (9)0.0148 (9)
C150.0393 (9)0.0862 (16)0.0440 (10)0.0144 (10)0.0026 (8)0.0033 (10)
C190.0498 (10)0.0540 (12)0.0578 (12)0.0095 (9)0.0098 (9)0.0082 (9)
C120.0575 (11)0.0569 (12)0.0439 (10)0.0085 (9)0.0152 (9)0.0114 (9)
C310.0863 (16)0.0539 (12)0.0392 (10)0.0176 (11)0.0046 (10)0.0067 (9)
C340.0725 (13)0.0464 (11)0.0488 (10)0.0088 (9)0.0317 (10)0.0003 (8)
C220.0663 (13)0.0867 (18)0.0395 (10)0.0265 (13)0.0055 (9)0.0027 (11)
C140.0606 (13)0.109 (2)0.0426 (11)0.0316 (14)0.0049 (10)0.0049 (12)
C370.0711 (14)0.0378 (10)0.0712 (14)0.0094 (9)0.0088 (11)0.0038 (10)
C130.0773 (16)0.0891 (18)0.0406 (11)0.0263 (14)0.0072 (10)0.0181 (11)
C280.0535 (12)0.0727 (16)0.0739 (15)0.0180 (11)0.0019 (11)0.0078 (12)
C320.126 (2)0.0698 (16)0.0302 (10)0.0331 (16)0.0127 (12)0.0023 (10)
C210.0602 (13)0.0862 (19)0.0617 (14)0.0127 (13)0.0026 (11)0.0319 (13)
C200.0660 (14)0.0633 (15)0.0866 (18)0.0147 (12)0.0085 (13)0.0278 (13)
C330.116 (2)0.0621 (14)0.0454 (11)0.0251 (14)0.0423 (14)0.0041 (10)
C300.093 (2)0.087 (2)0.0579 (15)0.0109 (16)0.0288 (15)0.0166 (14)
C290.0645 (16)0.103 (2)0.092 (2)0.0113 (16)0.0254 (15)0.0192 (18)
Geometric parameters (Å, º) top
Cl1—C31.7219 (18)C36—C271.401 (3)
Cl2—C41.7266 (19)C36—C311.404 (3)
O1—C101.2141 (19)C24—H24A0.9700
O2—C261.210 (2)C24—H24B0.9700
C9—C101.529 (2)C27—C281.373 (3)
C9—C81.541 (2)C4—C51.382 (3)
C9—C171.560 (2)C23—C221.387 (3)
C9—C251.603 (2)C23—H230.9300
C10—C111.484 (2)C5—H50.9300
C25—N11.459 (2)C15—C141.376 (3)
C25—C351.515 (2)C15—H150.9300
C25—C261.567 (2)C19—C201.380 (3)
C17—C181.506 (2)C19—H190.9300
C17—C241.516 (2)C12—C131.368 (3)
C17—H170.9800C12—H120.9300
C1—C61.383 (3)C31—C301.409 (4)
C1—C21.385 (2)C31—C321.412 (4)
C1—C71.518 (2)C34—C331.413 (3)
C7—C161.512 (2)C34—H340.9300
C7—C81.534 (2)C22—C211.369 (4)
C7—H70.9800C22—H220.9300
N1—C241.448 (2)C14—C131.371 (4)
N1—C371.452 (2)C14—H140.9300
C6—C51.375 (3)C37—H37A0.9600
C6—H60.9300C37—H37B0.9600
C8—H8A0.9700C37—H37C0.9600
C8—H8B0.9700C13—H130.9300
C18—C231.383 (3)C28—C291.410 (4)
C18—C191.385 (3)C28—H280.9300
C26—C271.473 (3)C32—C331.358 (4)
C2—C31.388 (2)C32—H320.9300
C2—H20.9300C21—C201.365 (4)
C3—C41.380 (3)C21—H210.9300
C11—C161.391 (2)C20—H200.9300
C11—C121.401 (2)C33—H330.9300
C16—C151.396 (2)C30—C291.356 (5)
C35—C341.367 (3)C30—H300.9300
C35—C361.397 (3)C29—H290.9300
C10—C9—C8105.82 (12)C17—C24—H24A111.5
C10—C9—C17111.28 (12)N1—C24—H24B111.5
C8—C9—C17111.75 (12)C17—C24—H24B111.5
C10—C9—C25109.40 (12)H24A—C24—H24B109.3
C8—C9—C25116.04 (12)C28—C27—C36120.44 (19)
C17—C9—C25102.65 (12)C28—C27—C26132.5 (2)
O1—C10—C11120.92 (15)C36—C27—C26107.09 (16)
O1—C10—C9122.52 (14)C3—C4—C5119.47 (17)
C11—C10—C9116.55 (13)C3—C4—Cl2121.45 (15)
N1—C25—C35111.22 (13)C5—C4—Cl2119.07 (17)
N1—C25—C26113.12 (13)C18—C23—C22120.8 (2)
C35—C25—C26101.58 (13)C18—C23—H23119.6
N1—C25—C9103.72 (12)C22—C23—H23119.6
C35—C25—C9115.68 (13)C6—C5—C4120.22 (19)
C26—C25—C9111.90 (12)C6—C5—H5119.9
C18—C17—C24116.94 (14)C4—C5—H5119.9
C18—C17—C9116.44 (13)C14—C15—C16120.8 (2)
C24—C17—C9103.44 (13)C14—C15—H15119.6
C18—C17—H17106.4C16—C15—H15119.6
C24—C17—H17106.4C20—C19—C18121.2 (2)
C9—C17—H17106.4C20—C19—H19119.4
C6—C1—C2118.46 (16)C18—C19—H19119.4
C6—C1—C7121.07 (14)C13—C12—C11120.4 (2)
C2—C1—C7120.46 (16)C13—C12—H12119.8
C16—C7—C1111.05 (14)C11—C12—H12119.8
C16—C7—C8112.58 (13)C36—C31—C30115.2 (2)
C1—C7—C8110.86 (13)C36—C31—C32115.5 (2)
C16—C7—H7107.4C30—C31—C32129.3 (2)
C1—C7—H7107.4C35—C34—C33117.9 (2)
C8—C7—H7107.4C35—C34—H34121.0
C24—N1—C37116.63 (16)C33—C34—H34121.0
C24—N1—C25108.04 (13)C21—C22—C23120.5 (2)
C37—N1—C25116.51 (16)C21—C22—H22119.7
C5—C6—C1121.11 (17)C23—C22—H22119.7
C5—C6—H6119.4C13—C14—C15120.3 (2)
C1—C6—H6119.4C13—C14—H14119.9
C7—C8—C9115.71 (13)C15—C14—H14119.9
C7—C8—H8A108.4N1—C37—H37A109.5
C9—C8—H8A108.4N1—C37—H37B109.5
C7—C8—H8B108.4H37A—C37—H37B109.5
C9—C8—H8B108.4N1—C37—H37C109.5
H8A—C8—H8B107.4H37A—C37—H37C109.5
C23—C18—C19117.65 (18)H37B—C37—H37C109.5
C23—C18—C17123.25 (17)C12—C13—C14120.2 (2)
C19—C18—C17119.10 (16)C12—C13—H13119.9
O2—C26—C27127.58 (16)C14—C13—H13119.9
O2—C26—C25124.35 (16)C27—C28—C29117.0 (3)
C27—C26—C25107.98 (14)C27—C28—H28121.5
C1—C2—C3120.70 (17)C29—C28—H28121.5
C1—C2—H2119.6C33—C32—C31120.6 (2)
C3—C2—H2119.6C33—C32—H32119.7
C4—C3—C2120.02 (16)C31—C32—H32119.7
C4—C3—Cl1120.86 (14)C20—C21—C22119.3 (2)
C2—C3—Cl1119.11 (15)C20—C21—H21120.4
C16—C11—C12119.67 (16)C22—C21—H21120.4
C16—C11—C10121.56 (15)C21—C20—C19120.5 (3)
C12—C11—C10118.67 (16)C21—C20—H20119.7
C11—C16—C15118.65 (17)C19—C20—H20119.7
C11—C16—C7121.94 (14)C32—C33—C34122.9 (2)
C15—C16—C7119.40 (16)C32—C33—H33118.5
C34—C35—C36119.14 (18)C34—C33—H33118.5
C34—C35—C25131.44 (18)C29—C30—C31121.7 (2)
C36—C35—C25109.43 (15)C29—C30—H30119.1
C35—C36—C27113.24 (16)C31—C30—H30119.1
C35—C36—C31123.9 (2)C30—C29—C28122.7 (3)
C27—C36—C31122.9 (2)C30—C29—H29118.6
N1—C24—C17101.37 (14)C28—C29—H29118.6
N1—C24—H24A111.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.972.493.045 (2)116
C17—H17···O10.982.332.794 (2)108
C32—H32···O2i0.932.483.351 (3)156
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC37H27Cl2NO2
Mr588.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)39.6142 (12), 8.3031 (2), 18.1810 (5)
β (°) 101.135 (3)
V3)5867.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
67467, 8160, 5776
Rint0.033
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.06
No. of reflections8160
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.32

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.972.493.045 (2)116.0
C17—H17···O10.982.332.794 (2)108.2
C32—H32···O2i0.93002.48003.351 (3)156.00
Symmetry code: (i) x, y, z+1/2.
 

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRamesh, P., Murugavel, S., Pandi, A. S., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarala, G., Kavitha, C. V., Mantelingu, K., Anandalwar, S. M., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Anal. Sci. 22, x241–x242.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelch, W. M., Kraska, A. R., Sarges, R. & Koe, K. B. (1984). J. Med. Chem. 27, 1508–1510.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds