organic compounds
1-Vinyl-1H-indole-3-carbaldehyde
aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com
In the title compound, C11H9NO, the C and O atoms of the attached carbaldehyde group deviate by just 0.052 (2) and 0.076 (1) Å, respectively, from the mean plane of the indole ring system. In addition to the molecular packing is stabilized by C—H⋯O hydrogen bonds, which form a C(7) chain motif, and π–π interactions (centroid–centroid distance 3.637 Å) between the pyrrole and benzene rings of the indole ring system.
Related literature
For related literature, see: Padwa et al. (1999); Mathiesen et al. (2005); Grinev et al. (1984); Gadaginamath & Patil (1999); Rodriguez et al. (1985); Karthick et al. (2005); Selvanayagam et al. (2005); Sonar et al. (2005). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).
Supporting information
10.1107/S160053680801547X/bt2714sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801547X/bt2714Isup2.hkl
A mixture of N-vinylindole (0.05 mol) and DMF (0.15 mol) was stirred with POCl3 (32.3 ml). The reaction mixture was poured into ice water (300 ml) and stirred for 30minutes at less than 10° C. The precipitated solid was collected by filtration and washed well water (100 ml). In order to get the diffraction quality crystals, the compound was recrystallized from ethyl acetate.
The H atoms were positioned geometrically with C—H distances of 0.93 Å and were included in the
in the riding motion approximation with Uiso= 1.2Ueq(C).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).C11H9NO | F(000) = 360 |
Mr = 171.19 | Dx = 1.294 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4554 reflections |
a = 8.3200 (5) Å | θ = 2.1–23.6° |
b = 8.1490 (5) Å | µ = 0.08 mm−1 |
c = 13.1620 (7) Å | T = 293 K |
β = 99.952 (1)° | Block, colourless |
V = 878.95 (9) Å3 | 0.24 × 0.22 × 0.20 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1823 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 28.0°, θmin = 3.0° |
ω scans | h = −10→10 |
9730 measured reflections | k = −10→10 |
2072 independent reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0665P)2 + 0.1375P] where P = (Fo2 + 2Fc2)/3 |
2072 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C11H9NO | V = 878.95 (9) Å3 |
Mr = 171.19 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.3200 (5) Å | µ = 0.08 mm−1 |
b = 8.1490 (5) Å | T = 293 K |
c = 13.1620 (7) Å | 0.24 × 0.22 × 0.20 mm |
β = 99.952 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 1823 reflections with I > 2σ(I) |
9730 measured reflections | Rint = 0.020 |
2072 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.21 e Å−3 |
2072 reflections | Δρmin = −0.19 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.81283 (15) | 0.20464 (18) | −0.13362 (9) | 0.0826 (4) | |
N1 | 0.41791 (12) | 0.24005 (13) | 0.07004 (7) | 0.0469 (3) | |
C1 | 0.54641 (14) | 0.14623 (13) | 0.12226 (8) | 0.0424 (3) | |
C2 | 0.56155 (16) | 0.06833 (16) | 0.21713 (9) | 0.0505 (3) | |
H2 | 0.4800 | 0.0748 | 0.2572 | 0.061* | |
C3 | 0.70276 (18) | −0.01899 (17) | 0.24918 (10) | 0.0581 (3) | |
H3 | 0.7166 | −0.0736 | 0.3121 | 0.070* | |
C4 | 0.82544 (17) | −0.02764 (17) | 0.18966 (11) | 0.0594 (4) | |
H4 | 0.9197 | −0.0870 | 0.2139 | 0.071* | |
C5 | 0.80997 (15) | 0.04980 (16) | 0.09564 (10) | 0.0527 (3) | |
H5 | 0.8925 | 0.0434 | 0.0563 | 0.063* | |
C6 | 0.66781 (14) | 0.13815 (13) | 0.06061 (8) | 0.0431 (3) | |
C7 | 0.60762 (15) | 0.23003 (15) | −0.03148 (9) | 0.0480 (3) | |
C8 | 0.45684 (16) | 0.28725 (16) | −0.02188 (9) | 0.0503 (3) | |
H8 | 0.3901 | 0.3497 | −0.0712 | 0.060* | |
C9 | 0.27187 (17) | 0.27412 (19) | 0.10596 (12) | 0.0615 (4) | |
H9 | 0.2701 | 0.2521 | 0.1751 | 0.074* | |
C10 | 0.14066 (19) | 0.3327 (2) | 0.05257 (15) | 0.0779 (5) | |
H10A | 0.1365 | 0.3567 | −0.0169 | 0.094* | |
H10B | 0.0498 | 0.3511 | 0.0834 | 0.094* | |
C11 | 0.68162 (19) | 0.2565 (2) | −0.12120 (11) | 0.0621 (4) | |
H11 | 0.6233 | 0.3191 | −0.1742 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0720 (7) | 0.1185 (10) | 0.0649 (7) | 0.0021 (6) | 0.0336 (6) | 0.0075 (6) |
N1 | 0.0474 (5) | 0.0518 (6) | 0.0428 (5) | 0.0032 (4) | 0.0110 (4) | −0.0026 (4) |
C1 | 0.0457 (6) | 0.0418 (5) | 0.0396 (5) | −0.0022 (4) | 0.0075 (4) | −0.0069 (4) |
C2 | 0.0595 (7) | 0.0521 (7) | 0.0417 (6) | −0.0035 (5) | 0.0136 (5) | −0.0023 (5) |
C3 | 0.0707 (8) | 0.0549 (7) | 0.0464 (6) | 0.0007 (6) | 0.0035 (6) | 0.0051 (5) |
C4 | 0.0562 (7) | 0.0544 (7) | 0.0641 (8) | 0.0080 (6) | 0.0011 (6) | 0.0007 (6) |
C5 | 0.0475 (6) | 0.0527 (7) | 0.0591 (7) | 0.0000 (5) | 0.0129 (5) | −0.0070 (5) |
C6 | 0.0472 (6) | 0.0418 (6) | 0.0411 (5) | −0.0053 (4) | 0.0102 (4) | −0.0072 (4) |
C7 | 0.0543 (7) | 0.0486 (6) | 0.0425 (6) | −0.0046 (5) | 0.0124 (5) | −0.0023 (5) |
C8 | 0.0566 (7) | 0.0513 (7) | 0.0427 (6) | 0.0017 (5) | 0.0079 (5) | 0.0021 (5) |
C9 | 0.0564 (8) | 0.0736 (9) | 0.0586 (8) | 0.0089 (6) | 0.0209 (6) | −0.0013 (6) |
C10 | 0.0580 (9) | 0.0892 (12) | 0.0894 (12) | 0.0170 (8) | 0.0205 (8) | 0.0036 (9) |
C11 | 0.0670 (8) | 0.0743 (9) | 0.0481 (7) | −0.0059 (7) | 0.0185 (6) | 0.0041 (6) |
O1—C11 | 1.2079 (19) | C5—C6 | 1.3933 (17) |
N1—C8 | 1.3610 (16) | C5—H5 | 0.9300 |
N1—C1 | 1.3949 (15) | C6—C7 | 1.4390 (17) |
N1—C9 | 1.4055 (16) | C7—C8 | 1.3645 (18) |
C1—C2 | 1.3869 (16) | C7—C11 | 1.4393 (18) |
C1—C6 | 1.4023 (16) | C8—H8 | 0.9300 |
C2—C3 | 1.3760 (19) | C9—C10 | 1.284 (2) |
C2—H2 | 0.9300 | C9—H9 | 0.9300 |
C3—C4 | 1.392 (2) | C10—H10A | 0.9300 |
C3—H3 | 0.9300 | C10—H10B | 0.9300 |
C4—C5 | 1.3751 (19) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | ||
C8—N1—C1 | 108.24 (10) | C5—C6—C1 | 119.20 (11) |
C8—N1—C9 | 126.55 (12) | C5—C6—C7 | 134.39 (11) |
C1—N1—C9 | 125.17 (11) | C1—C6—C7 | 106.40 (10) |
C2—C1—N1 | 129.57 (11) | C8—C7—C6 | 106.95 (10) |
C2—C1—C6 | 122.48 (11) | C8—C7—C11 | 123.72 (13) |
N1—C1—C6 | 107.94 (10) | C6—C7—C11 | 129.29 (12) |
C3—C2—C1 | 116.91 (12) | N1—C8—C7 | 110.46 (11) |
C3—C2—H2 | 121.5 | N1—C8—H8 | 124.8 |
C1—C2—H2 | 121.5 | C7—C8—H8 | 124.8 |
C2—C3—C4 | 121.60 (12) | C10—C9—N1 | 126.30 (15) |
C2—C3—H3 | 119.2 | C10—C9—H9 | 116.8 |
C4—C3—H3 | 119.2 | N1—C9—H9 | 116.8 |
C5—C4—C3 | 121.31 (12) | C9—C10—H10A | 120.0 |
C5—C4—H4 | 119.3 | C9—C10—H10B | 120.0 |
C3—C4—H4 | 119.3 | H10A—C10—H10B | 120.0 |
C4—C5—C6 | 118.49 (12) | O1—C11—C7 | 125.68 (15) |
C4—C5—H5 | 120.8 | O1—C11—H11 | 117.2 |
C6—C5—H5 | 120.8 | C7—C11—H11 | 117.2 |
C8—N1—C1—C2 | −178.34 (12) | N1—C1—C6—C7 | −0.32 (12) |
C9—N1—C1—C2 | −0.3 (2) | C5—C6—C7—C8 | 178.96 (13) |
C8—N1—C1—C6 | 0.77 (13) | C1—C6—C7—C8 | −0.24 (13) |
C9—N1—C1—C6 | 178.86 (12) | C5—C6—C7—C11 | 1.3 (2) |
N1—C1—C2—C3 | 178.96 (11) | C1—C6—C7—C11 | −177.94 (13) |
C6—C1—C2—C3 | −0.04 (18) | C1—N1—C8—C7 | −0.95 (14) |
C1—C2—C3—C4 | 0.56 (19) | C9—N1—C8—C7 | −179.00 (12) |
C2—C3—C4—C5 | −0.6 (2) | C6—C7—C8—N1 | 0.73 (14) |
C3—C4—C5—C6 | 0.0 (2) | C11—C7—C8—N1 | 178.60 (12) |
C4—C5—C6—C1 | 0.47 (17) | C8—N1—C9—C10 | 11.7 (3) |
C4—C5—C6—C7 | −178.65 (12) | C1—N1—C9—C10 | −166.00 (16) |
C2—C1—C6—C5 | −0.47 (17) | C8—C7—C11—O1 | −178.09 (15) |
N1—C1—C6—C5 | −179.66 (10) | C6—C7—C11—O1 | −0.7 (3) |
C2—C1—C6—C7 | 178.87 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.93 | 2.51 | 3.390 (2) | 159 |
Symmetry code: (i) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H9NO |
Mr | 171.19 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.3200 (5), 8.1490 (5), 13.1620 (7) |
β (°) | 99.952 (1) |
V (Å3) | 878.95 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.24 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9730, 2072, 1823 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.127, 1.05 |
No. of reflections | 2072 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.19 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.93 | 2.51 | 3.390 (2) | 159 |
Symmetry code: (i) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
SS thanks the Vice Chancellor and management of Kalasalingam University, Anand Nagar, Krishnankoil, for their support and encouragement.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gadaginamath, G. S. & Patil, S. A. (1999). Indian J. Chem. B, 38, 1070–1074. Google Scholar
Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159–163. CAS Google Scholar
Karthick, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2005). Acta Cryst. E61, o1780–o1782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mathiesen, J. M., Ulven, T., Martini, L., Gerlach, L. O., Heinemann, A. & Kostenis, E. (2005). Mol. Pharmacol. 68, 393–402. Web of Science PubMed CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607. Web of Science CrossRef PubMed CAS Google Scholar
Rodriguez, W. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823. CSD CrossRef CAS Web of Science Google Scholar
Selvanayagam, S., Chandak, M. S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3122–o3123. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. C61, o78–o80. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indoles and their derivatives have been interest for many years, since large number of natural products contain indole systems and they are found in a number of pharmaceutical products, fragrances and dyes (Padwa et al., 1999). Indole derivatives are identified as interfering with a G protein-independent signaling pathway of the CRTH2 receptor (Mathiesen et al., 2005). These derivatives possess antidepressant (Grinev et al., 1984), anti-microbial (Gadaginamath & Patil, 1999) and anti-inflammatory (Rodriguez et al., 1985) activities. In view of its importance, we have undertaken the single-crystal X-ray diffraction study and report here its results.
The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of the indole ring system is comparable to those reported for other indole derivatives (Karthick et al., 2005; Selvanayagam et al., 2005; Sonar et al., 2005). The bond length of C9—C10 [1.284 (2) Å] confirms the double bond character (Allen et al., 1987). The sum of the angles at N1 of the indole ring (360°) is in accordance with sp2 hybridization.
The indole ring is planar with a maximum deviation of 0.017 (1) Å for atom C8. The carbaldehyde group atoms C11 and O1 deviate 0.052 (2) and 0.076 (1) Å, respectively from the best plane of the indole ring.
In addition to the van der Waals forces, the molecular packing is stabilized by intermolecular C—H···O hydrogen bond (Table 2). Atom H9 of C9 forms a intermolecular hydrogen bond with oxygen atom O1 forming a C(7) chain motif of C—H···O hydrogen bond along the diagonal of ac plane (Fig. 2). In addition to this a weak π···π interaction between the pyrrole ring (N1/C1/C6—C8) at (x,y,z) and benzene ring (C1—C6) at (1 -x, -y), -z) stabilizes the molecular packing. The centroid-to-centroid distance is 3.637Å.