organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Vinyl-1H-indole-3-carbaldehyde

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 19 May 2008; accepted 22 May 2008; online 30 May 2008)

In the title compound, C11H9NO, the C and O atoms of the attached carbaldehyde group deviate by just 0.052 (2) and 0.076 (1) Å, respectively, from the mean plane of the indole ring system. In addition to van der Waals forces, the mol­ecular packing is stabilized by C—H⋯O hydrogen bonds, which form a C(7) chain motif, and ππ inter­actions (centroid–centroid distance 3.637 Å) between the pyrrole and benzene rings of the indole ring system.

Related literature

For related literature, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]); Mathiesen et al. (2005[Mathiesen, J. M., Ulven, T., Martini, L., Gerlach, L. O., Heinemann, A. & Kostenis, E. (2005). Mol. Pharmacol. 68, 393-402.]); Grinev et al. (1984[Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159-163.]); Gadaginamath & Patil (1999[Gadaginamath, G. S. & Patil, S. A. (1999). Indian J. Chem. B, 38, 1070-1074.]); Rodriguez et al. (1985[Rodriguez, W. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]); Karthick et al. (2005[Karthick, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2005). Acta Cryst. E61, o1780-o1782.]); Selvanayagam et al. (2005[Selvanayagam, S., Chandak, M. S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3122-o3123.]); Sonar et al. (2005[Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. C61, o78-o80.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO

  • Mr = 171.19

  • Monoclinic, P 21 /n

  • a = 8.3200 (5) Å

  • b = 8.1490 (5) Å

  • c = 13.1620 (7) Å

  • β = 99.952 (1)°

  • V = 878.95 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 9730 measured reflections

  • 2072 independent reflections

  • 1823 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.05

  • 2072 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.51 3.390 (2) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Indoles and their derivatives have been interest for many years, since large number of natural products contain indole systems and they are found in a number of pharmaceutical products, fragrances and dyes (Padwa et al., 1999). Indole derivatives are identified as interfering with a G protein-independent signaling pathway of the CRTH2 receptor (Mathiesen et al., 2005). These derivatives possess antidepressant (Grinev et al., 1984), anti-microbial (Gadaginamath & Patil, 1999) and anti-inflammatory (Rodriguez et al., 1985) activities. In view of its importance, we have undertaken the single-crystal X-ray diffraction study and report here its results.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of the indole ring system is comparable to those reported for other indole derivatives (Karthick et al., 2005; Selvanayagam et al., 2005; Sonar et al., 2005). The bond length of C9—C10 [1.284 (2) Å] confirms the double bond character (Allen et al., 1987). The sum of the angles at N1 of the indole ring (360°) is in accordance with sp2 hybridization.

The indole ring is planar with a maximum deviation of 0.017 (1) Å for atom C8. The carbaldehyde group atoms C11 and O1 deviate 0.052 (2) and 0.076 (1) Å, respectively from the best plane of the indole ring.

In addition to the van der Waals forces, the molecular packing is stabilized by intermolecular C—H···O hydrogen bond (Table 2). Atom H9 of C9 forms a intermolecular hydrogen bond with oxygen atom O1 forming a C(7) chain motif of C—H···O hydrogen bond along the diagonal of ac plane (Fig. 2). In addition to this a weak π···π interaction between the pyrrole ring (N1/C1/C6—C8) at (x,y,z) and benzene ring (C1—C6) at (1 -x, -y), -z) stabilizes the molecular packing. The centroid-to-centroid distance is 3.637Å.

Related literature top

For related literature, see: Padwa et al. (1999); Mathiesen et al. (2005); Grinev et al. (1984); Gadaginamath & Patil (1999); Rodriguez et al. (1985); Karthick et al. (2005); Selvanayagam et al. (2005); Sonar et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-vinylindole (0.05 mol) and DMF (0.15 mol) was stirred with POCl3 (32.3 ml). The reaction mixture was poured into ice water (300 ml) and stirred for 30minutes at less than 10° C. The precipitated solid was collected by filtration and washed well water (100 ml). In order to get the diffraction quality crystals, the compound was recrystallized from ethyl acetate.

Refinement top

The H atoms were positioned geometrically with C—H distances of 0.93 Å and were included in the refinement in the riding motion approximation with Uiso= 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme for the title compound; displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed down the b axis; H-bonds are shown as dashed lines. For clarity, H atoms, not involved in hydrogen bonds, have been omitted.
1-Vinyl-1H-indole-3-carbaldehyde top
Crystal data top
C11H9NOF(000) = 360
Mr = 171.19Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4554 reflections
a = 8.3200 (5) Åθ = 2.1–23.6°
b = 8.1490 (5) ŵ = 0.08 mm1
c = 13.1620 (7) ÅT = 293 K
β = 99.952 (1)°Block, colourless
V = 878.95 (9) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1823 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 3.0°
ω scansh = 1010
9730 measured reflectionsk = 1010
2072 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.1375P]
where P = (Fo2 + 2Fc2)/3
2072 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H9NOV = 878.95 (9) Å3
Mr = 171.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3200 (5) ŵ = 0.08 mm1
b = 8.1490 (5) ÅT = 293 K
c = 13.1620 (7) Å0.24 × 0.22 × 0.20 mm
β = 99.952 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1823 reflections with I > 2σ(I)
9730 measured reflectionsRint = 0.020
2072 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2072 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81283 (15)0.20464 (18)0.13362 (9)0.0826 (4)
N10.41791 (12)0.24005 (13)0.07004 (7)0.0469 (3)
C10.54641 (14)0.14623 (13)0.12226 (8)0.0424 (3)
C20.56155 (16)0.06833 (16)0.21713 (9)0.0505 (3)
H20.48000.07480.25720.061*
C30.70276 (18)0.01899 (17)0.24918 (10)0.0581 (3)
H30.71660.07360.31210.070*
C40.82544 (17)0.02764 (17)0.18966 (11)0.0594 (4)
H40.91970.08700.21390.071*
C50.80997 (15)0.04980 (16)0.09564 (10)0.0527 (3)
H50.89250.04340.05630.063*
C60.66781 (14)0.13815 (13)0.06061 (8)0.0431 (3)
C70.60762 (15)0.23003 (15)0.03148 (9)0.0480 (3)
C80.45684 (16)0.28725 (16)0.02188 (9)0.0503 (3)
H80.39010.34970.07120.060*
C90.27187 (17)0.27412 (19)0.10596 (12)0.0615 (4)
H90.27010.25210.17510.074*
C100.14066 (19)0.3327 (2)0.05257 (15)0.0779 (5)
H10A0.13650.35670.01690.094*
H10B0.04980.35110.08340.094*
C110.68162 (19)0.2565 (2)0.12120 (11)0.0621 (4)
H110.62330.31910.17420.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (7)0.1185 (10)0.0649 (7)0.0021 (6)0.0336 (6)0.0075 (6)
N10.0474 (5)0.0518 (6)0.0428 (5)0.0032 (4)0.0110 (4)0.0026 (4)
C10.0457 (6)0.0418 (5)0.0396 (5)0.0022 (4)0.0075 (4)0.0069 (4)
C20.0595 (7)0.0521 (7)0.0417 (6)0.0035 (5)0.0136 (5)0.0023 (5)
C30.0707 (8)0.0549 (7)0.0464 (6)0.0007 (6)0.0035 (6)0.0051 (5)
C40.0562 (7)0.0544 (7)0.0641 (8)0.0080 (6)0.0011 (6)0.0007 (6)
C50.0475 (6)0.0527 (7)0.0591 (7)0.0000 (5)0.0129 (5)0.0070 (5)
C60.0472 (6)0.0418 (6)0.0411 (5)0.0053 (4)0.0102 (4)0.0072 (4)
C70.0543 (7)0.0486 (6)0.0425 (6)0.0046 (5)0.0124 (5)0.0023 (5)
C80.0566 (7)0.0513 (7)0.0427 (6)0.0017 (5)0.0079 (5)0.0021 (5)
C90.0564 (8)0.0736 (9)0.0586 (8)0.0089 (6)0.0209 (6)0.0013 (6)
C100.0580 (9)0.0892 (12)0.0894 (12)0.0170 (8)0.0205 (8)0.0036 (9)
C110.0670 (8)0.0743 (9)0.0481 (7)0.0059 (7)0.0185 (6)0.0041 (6)
Geometric parameters (Å, º) top
O1—C111.2079 (19)C5—C61.3933 (17)
N1—C81.3610 (16)C5—H50.9300
N1—C11.3949 (15)C6—C71.4390 (17)
N1—C91.4055 (16)C7—C81.3645 (18)
C1—C21.3869 (16)C7—C111.4393 (18)
C1—C61.4023 (16)C8—H80.9300
C2—C31.3760 (19)C9—C101.284 (2)
C2—H20.9300C9—H90.9300
C3—C41.392 (2)C10—H10A0.9300
C3—H30.9300C10—H10B0.9300
C4—C51.3751 (19)C11—H110.9300
C4—H40.9300
C8—N1—C1108.24 (10)C5—C6—C1119.20 (11)
C8—N1—C9126.55 (12)C5—C6—C7134.39 (11)
C1—N1—C9125.17 (11)C1—C6—C7106.40 (10)
C2—C1—N1129.57 (11)C8—C7—C6106.95 (10)
C2—C1—C6122.48 (11)C8—C7—C11123.72 (13)
N1—C1—C6107.94 (10)C6—C7—C11129.29 (12)
C3—C2—C1116.91 (12)N1—C8—C7110.46 (11)
C3—C2—H2121.5N1—C8—H8124.8
C1—C2—H2121.5C7—C8—H8124.8
C2—C3—C4121.60 (12)C10—C9—N1126.30 (15)
C2—C3—H3119.2C10—C9—H9116.8
C4—C3—H3119.2N1—C9—H9116.8
C5—C4—C3121.31 (12)C9—C10—H10A120.0
C5—C4—H4119.3C9—C10—H10B120.0
C3—C4—H4119.3H10A—C10—H10B120.0
C4—C5—C6118.49 (12)O1—C11—C7125.68 (15)
C4—C5—H5120.8O1—C11—H11117.2
C6—C5—H5120.8C7—C11—H11117.2
C8—N1—C1—C2178.34 (12)N1—C1—C6—C70.32 (12)
C9—N1—C1—C20.3 (2)C5—C6—C7—C8178.96 (13)
C8—N1—C1—C60.77 (13)C1—C6—C7—C80.24 (13)
C9—N1—C1—C6178.86 (12)C5—C6—C7—C111.3 (2)
N1—C1—C2—C3178.96 (11)C1—C6—C7—C11177.94 (13)
C6—C1—C2—C30.04 (18)C1—N1—C8—C70.95 (14)
C1—C2—C3—C40.56 (19)C9—N1—C8—C7179.00 (12)
C2—C3—C4—C50.6 (2)C6—C7—C8—N10.73 (14)
C3—C4—C5—C60.0 (2)C11—C7—C8—N1178.60 (12)
C4—C5—C6—C10.47 (17)C8—N1—C9—C1011.7 (3)
C4—C5—C6—C7178.65 (12)C1—N1—C9—C10166.00 (16)
C2—C1—C6—C50.47 (17)C8—C7—C11—O1178.09 (15)
N1—C1—C6—C5179.66 (10)C6—C7—C11—O10.7 (3)
C2—C1—C6—C7178.87 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.513.390 (2)159
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9NO
Mr171.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3200 (5), 8.1490 (5), 13.1620 (7)
β (°) 99.952 (1)
V3)878.95 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9730, 2072, 1823
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.05
No. of reflections2072
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.513.390 (2)159
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

SS thanks the Vice Chancellor and management of Kalasalingam University, Anand Nagar, Krishnankoil, for their support and encouragement.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGadaginamath, G. S. & Patil, S. A. (1999). Indian J. Chem. B, 38, 1070–1074.  Google Scholar
First citationGrinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159–163.  CAS Google Scholar
First citationKarthick, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2005). Acta Cryst. E61, o1780–o1782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMathiesen, J. M., Ulven, T., Martini, L., Gerlach, L. O., Heinemann, A. & Kostenis, E. (2005). Mol. Pharmacol. 68, 393–402.  Web of Science PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRodriguez, W. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSelvanayagam, S., Chandak, M. S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3122–o3123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. C61, o78–o80.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds