organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3,5-di­methyl-4H-1,2,4-triazole

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bHebei Zhongrun Pharmaceutical Co. Ltd, Shijiazhuang Pharm Group Co. Ltd, Shijiazhuang 050041, People's Republic of China
*Correspondence e-mail: lidaojin7910@126.com

(Received 22 February 2008; accepted 16 May 2008; online 24 May 2008)

In the title compound, C4H8N4, inter­molecular N—H⋯N hydrogen bonds involving the amino groups and triazole N atoms form a two-dimensional sheet.

Related literature

For background, see: Desenko (1995[Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Compd), pp. 2-24.]); For further synthetic details, see: Van Albada et al. (1984[Van Albada, G. A., De Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). Inorg. Chem. 23, 1404-1408.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Ding et al. (2004[Ding, B., Yi, L., Zhu, L.-N., Cheng, P. & Liao, D.-Z. (2004). J. Coord. Chem. 57, 9-16.]); Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]); Van Diemen et al. (1991[Van Diemen, J. H., Haasnoot, J. G., Hage, R., Reedijk, J., Vos, J. G. & Wang, R. (1991). Inorg. Chem. 30, 4038-4043.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33-43.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N4

  • Mr = 112.14

  • Monoclinic, P 21 /c

  • a = 5.8423 (12) Å

  • b = 7.7540 (16) Å

  • c = 12.846 (3) Å

  • β = 96.91 (3)°

  • V = 577.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: none

  • 5941 measured reflections

  • 1333 independent reflections

  • 1101 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.142

  • S = 1.12

  • 1333 reflections

  • 81 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4D⋯N1i 0.91 (2) 2.25 (2) 3.145 (2) 170 (2)
N)—H4E⋯N2ii 0.96 (2) 2.20 (2) 3.086 (2) 154 (2)
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). For its strong σ-donor and weak π-acceptor properties, 1,2,4-triazole and its derivatives possess several coordination modes through three N donor atoms coordinating to metal ions (Van Diemen et al., 1991;Yi et al.,2004; Ding et al., 2004). We herein report the crystal structure of the title compound (I). In the molecule of (I), (Fig. 1), the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The H atoms of the amino group form hydrogen bonds with the N atoms of neighbouring triazole rings. The geometric parameters of the N—H···N (Spek, 2003) hydrogen-bonding interactions are given in Table 1, and a two dimensional sheet is formed by these intermolecular hydrogen bonds (Fig. 2).

Related literature top

For background, see: Desenko (1995); For further synthetic details, see: Van Albada et al. (1984). For related literature, see: Allen et al. (1987); Ding et al. (2004); Steel (2005); Van Diemen, Haasnoot, Hage, Reedijk, Vos & Wang (1991); Yi et al. (2004).

Experimental top

A 80% aqueous solution of 2.6 mol of hydrazine hydrate was added slowly to 2.0 mol of acetic acid. The mixture was heated slowly and kept at 493 K for about 3 h. When the mixture was cooled, colourless block shape crystals 4-amino-3,5-dimethyl-4H-1,2,4-triazole were isolated.

Refinement top

Methyl H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C). Atoms H4D and H4E, which are involved in hydrogen-bonding interactions, were located in a difference Fourier map and refined freely with isotropic displacement parameters.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003>.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with ellipsoids drawn with 30% displacement probability.
[Figure 2] Fig. 2. Two dimensional sheet formed by intermolecular hydrogen bonds in the title compound, with the hydrogen bonds shown as dashed lines.
4-Amino-3,5-dimethyl-4H-1,2,4-triazole top
Crystal data top
C4H8N4F(000) = 240
Mr = 112.14Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5363 reflections
a = 5.8423 (12) Åθ = 3.1–27.5°
b = 7.7540 (16) ŵ = 0.09 mm1
c = 12.846 (3) ÅT = 293 K
β = 96.91 (3)°Block, colourless
V = 577.7 (2) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1101 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 77
5941 measured reflectionsk = 1010
1333 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.068P)2 + 0.1583P]
where P = (Fo2 + 2Fc2)/3
1333 reflections(Δ/σ)max < 0.001
81 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C4H8N4V = 577.7 (2) Å3
Mr = 112.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8423 (12) ŵ = 0.09 mm1
b = 7.7540 (16) ÅT = 293 K
c = 12.846 (3) Å0.30 × 0.30 × 0.20 mm
β = 96.91 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1101 reflections with I > 2σ(I)
5941 measured reflectionsRint = 0.031
1333 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.20 e Å3
1333 reflectionsΔρmin = 0.19 e Å3
81 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N31.0528 (2)0.17414 (16)0.13102 (10)0.0297 (3)
N41.2366 (2)0.2703 (2)0.09833 (12)0.0396 (4)
N20.8357 (3)0.02909 (19)0.22608 (11)0.0408 (4)
N10.7072 (2)0.06903 (19)0.13019 (12)0.0406 (4)
C20.8418 (3)0.1557 (2)0.07503 (12)0.0322 (4)
C11.0418 (3)0.0933 (2)0.22443 (13)0.0323 (4)
C31.2408 (3)0.0804 (3)0.30796 (15)0.0481 (5)
H3A1.19500.01820.36670.072*
H3B1.29060.19410.32990.072*
H3C1.36510.02060.28120.072*
C40.7788 (3)0.2255 (3)0.03203 (14)0.0467 (5)
H4A0.62130.19690.05590.070*
H4B0.87750.17620.07870.070*
H4C0.79680.34860.03080.070*
H4D1.362 (4)0.200 (3)0.1041 (18)0.060 (6)*
H4E1.263 (4)0.361 (3)0.1488 (19)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0243 (7)0.0317 (7)0.0332 (7)0.0002 (5)0.0036 (5)0.0007 (5)
N40.0288 (8)0.0462 (9)0.0446 (9)0.0059 (7)0.0082 (6)0.0035 (7)
N20.0359 (8)0.0444 (8)0.0421 (9)0.0032 (6)0.0042 (6)0.0060 (6)
N10.0296 (7)0.0453 (8)0.0458 (9)0.0045 (6)0.0003 (6)0.0014 (7)
C20.0272 (8)0.0332 (8)0.0353 (8)0.0019 (6)0.0006 (6)0.0042 (6)
C10.0301 (8)0.0323 (8)0.0342 (9)0.0017 (6)0.0029 (6)0.0009 (6)
C30.0413 (10)0.0579 (11)0.0426 (10)0.0024 (9)0.0060 (8)0.0093 (9)
C40.0457 (11)0.0541 (11)0.0378 (10)0.0022 (9)0.0050 (8)0.0020 (8)
Geometric parameters (Å, º) top
N3—C21.358 (2)C2—C41.482 (2)
N3—C11.362 (2)C1—C31.487 (2)
N3—N41.4123 (18)C3—H3A0.9600
N4—H4D0.91 (2)C3—H3B0.9600
N4—H4E0.95 (2)C3—H3C0.9600
N2—C11.305 (2)C4—H4A0.9600
N2—N11.398 (2)C4—H4B0.9600
N1—C21.306 (2)C4—H4C0.9600
C2—N3—C1106.40 (13)N3—C1—C3123.42 (15)
C2—N3—N4124.91 (14)C1—C3—H3A109.5
C1—N3—N4128.54 (13)C1—C3—H3B109.5
N3—N4—H4D106.9 (14)H3A—C3—H3B109.5
N3—N4—H4E104.6 (13)C1—C3—H3C109.5
H4D—N4—H4E109 (2)H3A—C3—H3C109.5
C1—N2—N1107.45 (14)H3B—C3—H3C109.5
C2—N1—N2107.31 (13)C2—C4—H4A109.5
N1—C2—N3109.51 (14)C2—C4—H4B109.5
N1—C2—C4126.35 (15)H4A—C4—H4B109.5
N3—C2—C4124.14 (15)C2—C4—H4C109.5
N2—C1—N3109.34 (14)H4A—C4—H4C109.5
N2—C1—C3127.23 (16)H4B—C4—H4C109.5
C1—N2—N1—C20.04 (18)N1—N2—C1—N30.12 (18)
N2—N1—C2—N30.05 (18)N1—N2—C1—C3178.51 (17)
N2—N1—C2—C4179.82 (16)C2—N3—C1—N20.15 (18)
C1—N3—C2—N10.12 (18)N4—N3—C1—N2175.53 (15)
N4—N3—C2—N1175.76 (14)C2—N3—C1—C3178.54 (16)
C1—N3—C2—C4179.90 (15)N4—N3—C1—C35.8 (3)
N4—N3—C2—C44.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···N1i0.91 (2)2.25 (2)3.145 (2)170 (2)
N)—H4E···N2ii0.96 (2)2.20 (2)3.086 (2)154 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H8N4
Mr112.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8423 (12), 7.7540 (16), 12.846 (3)
β (°) 96.91 (3)
V3)577.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5941, 1333, 1101
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.12
No. of reflections1333
No. of parameters81
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003>.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···N1i0.91 (2)2.25 (2)3.145 (2)170 (2)
N)—H4E···N2ii0.96 (2)2.20 (2)3.086 (2)154 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Luoyang Normal University for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDesenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Compd), pp. 2–24.  Google Scholar
First citationDing, B., Yi, L., Zhu, L.-N., Cheng, P. & Liao, D.-Z. (2004). J. Coord. Chem. 57, 9–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Albada, G. A., De Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). Inorg. Chem. 23, 1404–1408.  CSD CrossRef CAS Web of Science Google Scholar
First citationVan Diemen, J. H., Haasnoot, J. G., Hage, R., Reedijk, J., Vos, J. G. & Wang, R. (1991). Inorg. Chem. 30, 4038–4043.  CSD CrossRef CAS Web of Science Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds