organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1Z,1′Z,3E,3′E)-1,1′-Di­phenyl-3,3′-[(1S,2S)-cyclo­hexane-1,2-diyldi­nitrilo]dibut-1-en-1-ol

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 29 April 2008; accepted 15 May 2008; online 21 May 2008)

A new tetra­dentate chiral Schiff base ligand, C26H30N2O2, has been synthesized by the reaction of 1-phenyl­butane-1,3-dione with (1S,2S)-(−)-1,2-diamino­cyclo­hexane. The chiral centers in the mol­ecule have the same S configuration, since the absolute configuration was determined by that of the starting reagent (1S,2S)-(−)-1,2-diamino­hexane. The cyclo­hexane ring is in a chair conformation, and the substituents are equatorial in the most stable conformation (trans-cyclo­hexyl). The crystal structure is stabilized by two intra­molecular O—H⋯N hydrogen bonds and a weak C—H⋯π inter­action.

Related literature

For the chemistry of Schiff bases, see: Alemi & Shaabani (2000[Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363-369.]); Bandini et al. (1999[Bandini, M., Cozzi, P. G., Melchioree, P. & Umani-Ronchi, A. (1999). Angew. Chem. Int. Ed. 38, 3357-3359.], 2000[Bandini, M., Cozzi, P. G. & Umani-Ronchi, A. (2000). Angew. Chem. Int. Ed. 39, 2327-2330.]); Belokon et al. (1997[Belokon, Y., Flego, M., Ikonnikov, N., Moscalenko, M., North, M., Orizu, C., Tararov, V. & Tasinazzo, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1293-1295.]); Cozzi (2003[Cozzi, P. G. (2003). Angew. Chem. Int. Ed. 42, 2895-2898.]); Jiang et al. (1995[Jiang, Y., Zhou, X., Hu, W., Wu, L. & Mi, A. (1995). Tetrahedron Asymmetry, 6, 405-408.]); Kureshy et al. (2001[Kureshy, R. I., Khan, N. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915-2918.]); Sasaki et al. (1991[Sasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318-1324.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30N2O2

  • Mr = 402.52

  • Orthorhombic, P 21 21 21

  • a = 8.9073 (11) Å

  • b = 10.1205 (13) Å

  • c = 26.476 (3) Å

  • V = 2386.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.990

  • 22130 measured reflections

  • 2683 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.159

  • S = 1.07

  • 2683 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 1.93 2.650 (3) 146
O1—H1⋯N1 0.82 1.91 2.629 (4) 145
C19—H19ACg3i 0.97 2.96 3.795 (5) 144
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]. Cg3 is the centroid of the C10–C15 ring.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, research on Schiff bases has been intensified for the reason that some of them can form materials with non-linear optical (NLO) activity (Alemi & Shaabani, 2000), and some can be used for the asymmetric oxidation of methyl phenyl sulfides (Sasaki et al., 1991). The search for new chiral ligands for asymmetric synthesis is an important task in organic chemistry. Various chiral Schiff bases are widely used in asymmetric reactions (Jiang et al., 1995; Belokon et al., 1997; Bandini et al., 1999, 2000; Kureshy et al., 2001; Cozzi, 2003). Herein, we report the synthesis and crystal structure of a new chiral Schiff base ligand (1Z,1'Z,3E,3'E)-3,3'-((1S,2S)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene))bis(1-phenylbut-1-en-1-ol). Fig. 1 show, the absolute configurations of the chiral centers and they have the same chirality (S-configuration). The cyclohexane ring is of chair conformation, and the substituents are equatorial in the most stable conformation of trans-cyclohexyl. The crystal structure is stabilized by two intramolecular O—H···N hydrogen bonds and a weak C—H···π interaction (Table 1).

Related literature top

For the chemistry of Schiff bases, see: Alemi & Shaabani (2000); Bandini et al. (1999, 2000); Belokon et al. (1997); Cozzi (2003); Jiang et al. (1995); Kureshy et al. (2001); Sasaki et al. (1991). Cg3 is the centroid of the C10–C15 ring.

Experimental top

1-phenylbutane-1,3-dione (3.89 g, 0.024 mol) in 6 ml of chloroform was added dropwise to a solution of chloroform (20 ml) containing (1S, 2S)-(–)-1,2-diaminocyclohexane (1.14 g, 0.01 mol), which was kept at 0–5°C with vigorous stirring during the reaction. After complete addition which took approximately 30 min, the mixture was stirred for another 1 h at room temperature. After the evaporation of the solvent under reduced pressure, the crude product was recrystallized by slowly evaporating with petroleum ether to yield colorless crystals.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, O atoms to which they are bonded, with C—H = 0.93 to 0.98Å, O—H = 0.82 Å , with Uiso (H) = 1.2Ueq (Caromatic, Cmethylene), Uiso(H) = 1.5Ueq (Cmethyl) or 1.5 Ueq(O). In the absence of significant anomalous scattering effects, 2006 Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
(1Z,1'Z,3E,3'E)-1,1'-Diphenyl-3,3'- [(1S,2S)-cyclohexane-1,2-diyldinitrilo]dibut-1-en-1-ol top
Crystal data top
C26H30N2O2F(000) = 864
Mr = 402.52Dx = 1.120 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4136 reflections
a = 8.9073 (11) Åθ = 3.1–27.5°
b = 10.1205 (13) ŵ = 0.07 mm1
c = 26.476 (3) ÅT = 293 K
V = 2386.7 (5) Å3Block, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2683 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.980, Tmax = 0.990l = 3232
22130 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.2595P]
where P = (Fo2 + 2Fc2)/3
2683 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C26H30N2O2V = 2386.7 (5) Å3
Mr = 402.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9073 (11) ŵ = 0.07 mm1
b = 10.1205 (13) ÅT = 293 K
c = 26.476 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1952 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.062
22130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2683 reflectionsΔρmin = 0.17 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.8242 (3)0.2435 (3)0.96116 (10)0.0576 (7)
C170.8209 (4)0.1345 (3)0.92486 (12)0.0562 (8)
H170.90720.14340.90210.067*
N10.6697 (4)0.2620 (3)0.86429 (10)0.0618 (8)
O20.7103 (3)0.3353 (2)1.04671 (9)0.0684 (7)
H2A0.71890.28381.02300.103*
C1'0.7786 (4)0.4406 (3)1.03675 (13)0.0582 (8)
C180.8342 (5)0.0039 (3)0.95283 (14)0.0669 (10)
H18A0.92900.00140.97080.080*
H18B0.75410.00250.97760.080*
C20.6168 (4)0.4861 (4)0.84749 (13)0.0597 (9)
H20.56300.56130.85640.072*
C3'0.8907 (4)0.3615 (4)0.95676 (13)0.0571 (8)
C30.5973 (4)0.3737 (4)0.87611 (13)0.0597 (9)
C210.6703 (6)0.0219 (4)0.85724 (15)0.0776 (12)
H21A0.57610.02380.83890.093*
H21B0.75120.02910.83290.093*
O10.7936 (4)0.3983 (3)0.79076 (10)0.0852 (9)
H10.78750.33760.81120.128*
C160.6767 (4)0.1386 (3)0.89317 (13)0.0584 (9)
H160.58990.13450.91590.070*
C40.7242 (4)0.6191 (4)0.77629 (13)0.0653 (10)
C2'0.8698 (4)0.4569 (4)0.99355 (13)0.0618 (9)
H2'0.91920.53720.98960.074*
C100.7610 (4)0.5522 (4)1.07347 (14)0.0648 (9)
C230.9890 (5)0.3907 (4)0.91182 (14)0.0684 (10)
H23A0.93300.37650.88130.103*
H23B1.07470.33320.91230.103*
H23C1.02190.48090.91320.103*
C10.7137 (4)0.4938 (4)0.80549 (13)0.0629 (9)
C220.4918 (5)0.3766 (4)0.92075 (15)0.0778 (12)
H22A0.54380.34690.95040.117*
H22B0.40790.31940.91430.117*
H22C0.45650.46520.92590.117*
C190.8253 (5)0.1133 (4)0.91717 (15)0.0772 (11)
H19A0.91260.11360.89530.093*
H19B0.82620.19460.93660.093*
C200.6840 (6)0.1081 (4)0.88527 (18)0.0847 (12)
H20A0.68550.18010.86110.102*
H20B0.59710.11970.90690.102*
C150.7371 (5)0.5242 (4)1.12405 (15)0.0771 (11)
H150.73280.43681.13480.093*
C90.6005 (5)0.6985 (4)0.76822 (16)0.0787 (12)
H90.50800.67440.78170.094*
C110.7644 (5)0.6836 (4)1.05852 (18)0.0824 (13)
H110.77930.70471.02470.099*
C120.7458 (6)0.7824 (5)1.0933 (2)0.1040 (17)
H120.74830.87011.08280.125*
C80.6128 (7)0.8127 (5)0.74050 (19)0.1055 (17)
H80.52900.86580.73520.127*
C140.7197 (7)0.6255 (5)1.15854 (18)0.1006 (16)
H140.70490.60651.19250.121*
C50.8588 (5)0.6560 (6)0.75543 (18)0.1002 (16)
H50.94250.60220.75970.120*
C130.7242 (6)0.7548 (6)1.1424 (2)0.1062 (18)
H130.71230.82321.16550.127*
C60.8718 (8)0.7720 (7)0.7282 (3)0.133 (2)
H60.96400.79790.71500.160*
C70.7471 (11)0.8477 (6)0.7210 (2)0.126 (2)
H70.75460.92510.70230.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0638 (17)0.0557 (16)0.0532 (15)0.0045 (15)0.0003 (14)0.0004 (14)
C170.061 (2)0.0553 (19)0.0528 (17)0.0016 (18)0.0041 (16)0.0009 (16)
N10.0690 (19)0.0633 (18)0.0531 (15)0.0081 (17)0.0017 (15)0.0041 (14)
O20.0813 (18)0.0624 (15)0.0614 (14)0.0075 (15)0.0111 (14)0.0046 (12)
C1'0.062 (2)0.0504 (18)0.0618 (19)0.0020 (18)0.0071 (18)0.0042 (17)
C180.077 (3)0.059 (2)0.065 (2)0.003 (2)0.006 (2)0.0059 (18)
C20.063 (2)0.061 (2)0.0551 (18)0.0043 (18)0.0048 (17)0.0030 (17)
C3'0.0552 (19)0.0579 (19)0.0582 (19)0.0051 (17)0.0012 (17)0.0089 (17)
C30.059 (2)0.070 (2)0.0505 (18)0.006 (2)0.0025 (16)0.0044 (18)
C210.091 (3)0.073 (3)0.069 (2)0.002 (2)0.013 (2)0.011 (2)
O10.091 (2)0.097 (2)0.0675 (16)0.0300 (19)0.0233 (16)0.0236 (15)
C160.065 (2)0.0539 (19)0.0566 (18)0.0023 (19)0.0052 (18)0.0011 (16)
C40.065 (2)0.077 (2)0.0537 (18)0.010 (2)0.0035 (18)0.0070 (19)
C2'0.067 (2)0.0527 (19)0.066 (2)0.0099 (18)0.0021 (18)0.0005 (18)
C100.061 (2)0.061 (2)0.072 (2)0.0020 (19)0.0050 (19)0.0072 (19)
C230.067 (2)0.072 (2)0.066 (2)0.007 (2)0.0063 (19)0.008 (2)
C10.058 (2)0.074 (2)0.0565 (18)0.009 (2)0.0001 (17)0.0050 (19)
C220.080 (3)0.083 (3)0.070 (2)0.014 (2)0.026 (2)0.014 (2)
C190.090 (3)0.056 (2)0.086 (3)0.006 (2)0.004 (2)0.001 (2)
C200.100 (3)0.060 (2)0.094 (3)0.001 (2)0.003 (3)0.015 (2)
C150.082 (3)0.083 (3)0.067 (2)0.004 (2)0.005 (2)0.008 (2)
C90.078 (3)0.083 (3)0.076 (3)0.001 (2)0.012 (2)0.020 (2)
C110.088 (3)0.064 (2)0.095 (3)0.000 (2)0.007 (3)0.001 (2)
C120.106 (4)0.064 (3)0.142 (5)0.002 (3)0.016 (4)0.023 (3)
C80.136 (5)0.090 (3)0.090 (3)0.001 (4)0.018 (3)0.031 (3)
C140.110 (4)0.114 (4)0.078 (3)0.014 (4)0.010 (3)0.030 (3)
C50.077 (3)0.124 (4)0.100 (3)0.017 (3)0.012 (3)0.031 (3)
C130.096 (4)0.091 (4)0.131 (5)0.001 (3)0.001 (4)0.054 (4)
C60.120 (5)0.149 (6)0.130 (5)0.056 (5)0.021 (4)0.039 (5)
C70.180 (7)0.099 (4)0.100 (4)0.037 (5)0.006 (5)0.034 (3)
Geometric parameters (Å, º) top
N2—C3'1.338 (4)C10—C151.385 (5)
N2—C171.463 (4)C10—C111.388 (5)
C17—C181.520 (5)C23—H23A0.9600
C17—C161.535 (5)C23—H23B0.9600
C17—H170.9800C23—H23C0.9600
N1—C31.339 (5)C22—H22A0.9600
N1—C161.465 (4)C22—H22B0.9600
O2—C1'1.255 (4)C22—H22C0.9600
O2—H2A0.8200C19—C201.517 (6)
C1'—C2'1.413 (5)C19—H19A0.9700
C1'—C101.498 (5)C19—H19B0.9700
C18—C191.518 (5)C20—H20A0.9700
C18—H18A0.9700C20—H20B0.9700
C18—H18B0.9700C15—C141.382 (6)
C2—C31.378 (5)C15—H150.9300
C2—C11.409 (5)C9—C81.374 (6)
C2—H20.9300C9—H90.9300
C3'—C2'1.384 (5)C11—C121.370 (6)
C3'—C231.506 (5)C11—H110.9300
C3—C221.510 (5)C12—C131.341 (7)
C21—C201.515 (5)C12—H120.9300
C21—C161.517 (5)C8—C71.350 (8)
C21—H21A0.9700C8—H80.9300
C21—H21B0.9700C14—C131.377 (7)
O1—C11.262 (4)C14—H140.9300
O1—H10.8200C5—C61.382 (8)
C16—H160.9800C5—H50.9300
C4—C51.372 (6)C13—H130.9300
C4—C91.380 (5)C6—C71.363 (9)
C4—C11.488 (5)C6—H60.9300
C2'—H2'0.9300C7—H70.9300
C3'—N2—C17128.6 (3)H23A—C23—H23C109.5
N2—C17—C18109.5 (3)H23B—C23—H23C109.5
N2—C17—C16110.8 (3)O1—C1—C2123.2 (3)
C18—C17—C16110.8 (3)O1—C1—C4117.2 (3)
N2—C17—H17108.6C2—C1—C4119.7 (3)
C18—C17—H17108.6C3—C22—H22A109.5
C16—C17—H17108.6C3—C22—H22B109.5
C3—N1—C16128.2 (3)H22A—C22—H22B109.5
C1'—O2—H2A109.5C3—C22—H22C109.5
O2—C1'—C2'123.2 (3)H22A—C22—H22C109.5
O2—C1'—C10116.9 (3)H22B—C22—H22C109.5
C2'—C1'—C10119.8 (3)C20—C19—C18111.2 (3)
C19—C18—C17111.9 (3)C20—C19—H19A109.4
C19—C18—H18A109.2C18—C19—H19A109.4
C17—C18—H18A109.2C20—C19—H19B109.4
C19—C18—H18B109.2C18—C19—H19B109.4
C17—C18—H18B109.2H19A—C19—H19B108.0
H18A—C18—H18B107.9C21—C20—C19111.7 (4)
C3—C2—C1123.8 (3)C21—C20—H20A109.3
C3—C2—H2118.1C19—C20—H20A109.3
C1—C2—H2118.1C21—C20—H20B109.3
N2—C3'—C2'120.1 (3)C19—C20—H20B109.3
N2—C3'—C23120.1 (3)H20A—C20—H20B107.9
C2'—C3'—C23119.8 (3)C14—C15—C10120.3 (4)
N1—C3—C2120.5 (3)C14—C15—H15119.9
N1—C3—C22119.9 (3)C10—C15—H15119.9
C2—C3—C22119.6 (3)C8—C9—C4120.6 (5)
C20—C21—C16111.5 (3)C8—C9—H9119.7
C20—C21—H21A109.3C4—C9—H9119.7
C16—C21—H21A109.3C12—C11—C10120.3 (5)
C20—C21—H21B109.3C12—C11—H11119.8
C16—C21—H21B109.3C10—C11—H11119.8
H21A—C21—H21B108.0C13—C12—C11121.1 (5)
C1—O1—H1109.5C13—C12—H12119.4
N1—C16—C21109.5 (3)C11—C12—H12119.4
N1—C16—C17110.1 (3)C7—C8—C9119.7 (6)
C21—C16—C17110.7 (3)C7—C8—H8120.2
N1—C16—H16108.8C9—C8—H8120.2
C21—C16—H16108.8C13—C14—C15119.8 (5)
C17—C16—H16108.8C13—C14—H14120.1
C5—C4—C9118.5 (4)C15—C14—H14120.1
C5—C4—C1119.7 (4)C4—C5—C6120.9 (6)
C9—C4—C1121.8 (4)C4—C5—H5119.5
C3'—C2'—C1'124.5 (3)C6—C5—H5119.5
C3'—C2'—H2'117.8C12—C13—C14120.2 (5)
C1'—C2'—H2'117.8C12—C13—H13119.9
C15—C10—C11118.3 (4)C14—C13—H13119.9
C15—C10—C1'119.3 (3)C7—C6—C5118.8 (6)
C11—C10—C1'122.3 (4)C7—C6—H6120.6
C3'—C23—H23A109.5C5—C6—H6120.6
C3'—C23—H23B109.5C8—C7—C6121.5 (5)
H23A—C23—H23B109.5C8—C7—H7119.3
C3'—C23—H23C109.5C6—C7—H7119.3
C3'—N2—C17—C18141.4 (4)C3—C2—C1—O11.2 (6)
C3'—N2—C17—C1696.1 (4)C3—C2—C1—C4178.6 (3)
N2—C17—C18—C19177.8 (3)C5—C4—C1—O134.7 (6)
C16—C17—C18—C1955.2 (4)C9—C4—C1—O1143.5 (4)
C17—N2—C3'—C2'174.1 (3)C5—C4—C1—C2145.5 (4)
C17—N2—C3'—C236.1 (5)C9—C4—C1—C236.3 (5)
C16—N1—C3—C2172.3 (3)C17—C18—C19—C2054.6 (5)
C16—N1—C3—C228.4 (6)C16—C21—C20—C1955.7 (5)
C1—C2—C3—N11.4 (6)C18—C19—C20—C2154.4 (5)
C1—C2—C3—C22179.4 (4)C11—C10—C15—C141.0 (7)
C3—N1—C16—C21141.4 (4)C1'—C10—C15—C14179.6 (4)
C3—N1—C16—C1796.7 (4)C5—C4—C9—C80.9 (6)
C20—C21—C16—N1177.5 (4)C1—C4—C9—C8179.1 (4)
C20—C21—C16—C1756.0 (5)C15—C10—C11—C120.6 (7)
N2—C17—C16—N161.4 (3)C1'—C10—C11—C12179.1 (4)
C18—C17—C16—N1176.9 (3)C10—C11—C12—C130.0 (9)
N2—C17—C16—C21177.4 (3)C4—C9—C8—C70.0 (7)
C18—C17—C16—C2155.6 (4)C10—C15—C14—C130.8 (8)
N2—C3'—C2'—C1'1.1 (6)C9—C4—C5—C61.9 (7)
C23—C3'—C2'—C1'179.1 (3)C1—C4—C5—C6179.9 (5)
O2—C1'—C2'—C3'2.2 (6)C11—C12—C13—C140.3 (9)
C10—C1'—C2'—C3'178.4 (3)C15—C14—C13—C120.2 (9)
O2—C1'—C10—C1530.0 (5)C4—C5—C6—C72.0 (9)
C2'—C1'—C10—C15149.4 (4)C9—C8—C7—C60.0 (10)
O2—C1'—C10—C11148.5 (4)C5—C6—C7—C81.0 (11)
C2'—C1'—C10—C1132.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.932.650 (3)146
O1—H1···N10.821.912.629 (4)145
C19—H19A···Cg3i0.972.963.795 (5)144
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H30N2O2
Mr402.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.9073 (11), 10.1205 (13), 26.476 (3)
V3)2386.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
22130, 2683, 1952
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.159, 1.07
No. of reflections2683
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.932.650 (3)146
O1—H1···N10.821.912.629 (4)145
C19—H19A···Cg3i0.972.963.795 (5)144
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to ZRQ.

References

First citationAlemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363–369.  CAS Google Scholar
First citationBandini, M., Cozzi, P. G., Melchioree, P. & Umani-Ronchi, A. (1999). Angew. Chem. Int. Ed. 38, 3357–3359.  Web of Science CrossRef CAS Google Scholar
First citationBandini, M., Cozzi, P. G. & Umani-Ronchi, A. (2000). Angew. Chem. Int. Ed. 39, 2327–2330.  Web of Science CrossRef CAS Google Scholar
First citationBelokon, Y., Flego, M., Ikonnikov, N., Moscalenko, M., North, M., Orizu, C., Tararov, V. & Tasinazzo, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1293–1295.  CrossRef Web of Science Google Scholar
First citationCozzi, P. G. (2003). Angew. Chem. Int. Ed. 42, 2895–2898.  Web of Science CrossRef CAS Google Scholar
First citationJiang, Y., Zhou, X., Hu, W., Wu, L. & Mi, A. (1995). Tetrahedron Asymmetry, 6, 405–408.  CrossRef CAS Web of Science Google Scholar
First citationKureshy, R. I., Khan, N. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915–2918.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318–1324.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds