organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1105-o1106

Chloro­thia­zide–pyridine (1/3)

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 30 April 2008; accepted 13 May 2008; online 17 May 2008)

In the title compound, C7H6ClN3O4S2·3C5H5N, (systematic name: 6-chloro-2H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-dioxide pyridine tris­olvate), chloro­thia­zide forms a 1:3 solvate with pyridine. The crystal structure is stabilized by strong inter­molecular N—H⋯N hydrogen bonds.

Related literature

For details on experimental methods used to obtain this form, see: Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.], 2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]). For previous studies on the non-solvated form of chloro­thaizide, see: Dupont & Dideberg (1970[Dupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884-1885.]); Shankland et al. (1997[Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.]). For solvated forms see: Johnston et al. (2007a[Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007a). Acta Cryst. E63, o2422.],b[Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007b). Acta Cryst. E63, o2423.]); Johnston, Florence & Kennedy (2007[Johnston, A., Florence, A. J. & Kennedy, A. R. (2007). Acta Cryst. E63, o4021.]); Fernandes, Florence et al. (2006[Fernandes, P., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62, o2216-o2218.]); Fernandes, Shankland et al. (2007[Fernandes, P., Shankland, K., Florence, A. J., Shankland, N. & Johnston, A. (2007). J. Pharm. Sci. 96, 1192-1202.]). For studies of inter­molecular inter­actions in the related thia­zide diuretic, hydro­chloro­thia­zide, see: Johnston, Florence, Shankland et al. (2007[Johnston, A., Florence, A. J., Shankland, N., Kennedy, A. R., Shankland, K. & Price, S. L. (2007). Cryst. Growth Des. 7, 705-712.]). For additional literature on related thia­zide compounds, see: Fabbiani et al. (2007[Fabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659-o663.]); Fernandes, Johnston et al. (2007[Fernandes, P., Johnston, A., Leech, C. K., Shankland, K., David, W. I. F. & Florence, A. J. (2007). Acta Cryst. E63, o3956.]); Fernandes, Leech et al. (2007[Fernandes, P., Leech, C. K., Johnston, A., Shankland, K., David, W. I. F., Shankland, N. & Florence, A. J. (2007). Acta Cryst. E63, o3685.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClN3O4S2·3C5H5N

  • Mr = 533.02

  • Triclinic, [P \overline 1]

  • a = 9.0697 (15) Å

  • b = 11.863 (2) Å

  • c = 11.875 (2) Å

  • α = 100.691 (7)°

  • β = 98.667 (8)°

  • γ = 98.134 (7)°

  • V = 1222.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 123 (2) K

  • 0.18 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 14598 measured reflections

  • 4219 independent reflections

  • 2998 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.103

  • S = 1.04

  • 4219 reflections

  • 328 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N2S 0.91 (4) 1.86 (4) 2.774 (4) 177 (4)
N1—H5⋯N1Si 0.85 (4) 2.07 (4) 2.900 (4) 165 (4)
N1—H6⋯N3S 0.83 (3) 2.13 (4) 2.946 (4) 170 (3)
Symmetry code: (i) x-1, y, z.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chlorothiazide (CT) is a thiazide diuretic drug that is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1970; Shankland et al., 1997). The title compound was produced as part of an automated parallel crystallization study (Florence et al., 2006) of CT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of thiazide diuretics including hydrochlorothiazide (Johnston et al., 2007), hydroflumethiazide (Fernandes, Johnston, A., et al., 2007), trichlormethiazide (Fernandes, P., Leech, C.K. et al., 2007), bendroflumethaizide (Fabbiani et al., 2007) and CT. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated pyridine solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The molecules crystallize in space group P1 with one CT and three pyridine molecules in the asymmetric unit. The structure contains three unique N—H···N contacts (Table 1) between CT and solvent molecules whereby all hydrogen bond donors in CT, N1—H5, N1—H6 and N2—H2, are connected to a distinct pyridine molecule. The crystal structure is further stabilized by extensive offset face-to-face π^···^π interactions. All contacts combine to form a layered structure with layers comprising CT plus pyridine (residue B, Fig 1) alternating with pyridine residues C and D stacking in the [001] direction (Fig. 2).

Related literature top

For details on experimental methods used to obtain this form, see: Florence et al. (2003, 2006). For previous studies on the non-solvated form of chlorothaizide, see: Dupont & Dideberg (1970); Shankland et al. (1997). For solvated forms see: Johnston et al. (2007a,b); Johnston, Florence & Kennedy (2007); Fernandes, Florence et al. (2006); Fernandes, Shankland et al. (2007). For studies of intermolecular interactions in the related thiazide diuretic, hydrochlorothiazide, see: Johnston, Florence, Shankland et al. (2007). For additional literature on related thiazide compounds, see: Fabbiani et al. (2007); Fernandes, Johnston et al. (2007); Fernandes, Leech et al. (2007).

Experimental top

A single-crystal sample of the title compound was recrystallized from a saturated pyridine solution by isothermal solvent evaporation at 278 oK.

Refinement top

The 3 H-atoms attached to N-atoms were located by difference synthesis and refined isotropically. All other H-atoms were constrained to idealized geometries using a riding model with Uĩso~(H)=1.2U~eq~(C) and C—H=0.95 \%A.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure and atomic labelling of CT pyridine (1/3), showing 50% probablility displacement ellipsoids. 'S' in atomic labelling refers to solvent molecule.
[Figure 2] Fig. 2. The crystal packing in CT pyridine (1/3), viewed down the a-axis. Residues A, B, C and D are coloured green, blue, red and black.
6-chloro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide pyridine trisolvate top
Crystal data top
C7H6ClN3O4S2·3C5H5NZ = 2
Mr = 533.02F(000) = 552
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: P -1Mo Kα radiation, λ = 0.71073 Å
a = 9.0697 (15) ÅCell parameters from 3968 reflections
b = 11.863 (2) Åθ = 1.0–27.1°
c = 11.875 (2) ŵ = 0.37 mm1
α = 100.691 (7)°T = 123 K
β = 98.667 (8)°Cut fragment, colourless
γ = 98.134 (7)°0.18 × 0.10 × 0.05 mm
V = 1222.1 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2998 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ϕ and ω scansh = 100
14598 measured reflectionsk = 1314
4219 independent reflectionsl = 1314
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0253P)2 + 1.8286P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.34 e Å3
4219 reflectionsΔρmin = 0.49 e Å3
328 parameters
Crystal data top
C7H6ClN3O4S2·3C5H5Nγ = 98.134 (7)°
Mr = 533.02V = 1222.1 (4) Å3
Triclinic, P1Z = 2
a = 9.0697 (15) ÅMo Kα radiation
b = 11.863 (2) ŵ = 0.37 mm1
c = 11.875 (2) ÅT = 123 K
α = 100.691 (7)°0.18 × 0.10 × 0.05 mm
β = 98.667 (8)°
Data collection top
Nonius KappaCCD
diffractometer
2998 reflections with I > 2σ(I)
14598 measured reflectionsRint = 0.085
4219 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
4219 reflectionsΔρmin = 0.49 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11042 (9)0.34675 (7)0.54702 (7)0.0161 (2)
S10.24543 (9)0.02698 (7)0.33227 (7)0.0127 (2)
S20.16390 (10)0.25714 (7)0.26176 (7)0.0134 (2)
O30.3649 (3)0.0349 (2)0.2890 (2)0.0213 (6)
O10.1454 (3)0.1213 (2)0.2501 (2)0.0230 (6)
O20.1320 (3)0.20934 (19)0.14895 (19)0.0185 (6)
O40.3120 (2)0.2257 (2)0.28715 (19)0.0197 (6)
N30.3205 (3)0.0768 (2)0.4406 (2)0.0145 (7)
N20.2459 (3)0.0587 (2)0.5857 (3)0.0121 (7)
N10.1235 (4)0.3939 (3)0.2847 (3)0.0178 (7)
C30.3177 (4)0.0285 (3)0.5481 (3)0.0137 (8)
H30.37300.05870.60680.016*
C20.1548 (3)0.1084 (3)0.5117 (3)0.0093 (7)
C70.1389 (3)0.0736 (3)0.3908 (3)0.0098 (7)
C10.0429 (3)0.1218 (3)0.3176 (3)0.0101 (7)
H10.03200.09680.23560.012*
C50.0367 (3)0.2054 (3)0.3622 (3)0.0098 (7)
C60.0171 (4)0.2406 (3)0.4846 (3)0.0108 (8)
C40.0752 (4)0.1928 (3)0.5575 (3)0.0103 (7)
H40.08510.21730.63960.012*
N1S0.7057 (3)0.5432 (2)0.4150 (3)0.0195 (7)
C1S0.6985 (4)0.5848 (3)0.5263 (3)0.0202 (9)
H1S0.76240.56080.58500.024*
C2S0.6037 (4)0.6605 (3)0.5610 (3)0.0242 (9)
H2S0.60200.68700.64130.029*
C3S0.5120 (4)0.6967 (3)0.4769 (4)0.0291 (10)
H3S0.44690.75000.49810.035*
C4S0.5158 (4)0.6547 (3)0.3615 (4)0.0308 (10)
H4S0.45200.67690.30140.037*
C5S0.6150 (4)0.5793 (3)0.3352 (3)0.0255 (9)
H5S0.61860.55160.25550.031*
N2S0.2984 (3)0.1270 (2)0.8267 (2)0.0200 (7)
C6S0.2000 (4)0.1232 (3)0.9002 (3)0.0237 (9)
H6S0.09530.11600.86980.028*
C7S0.2439 (5)0.1292 (3)1.0180 (3)0.0335 (11)
H7S0.17050.12461.06690.040*
C8S0.3955 (5)0.1419 (3)1.0634 (3)0.0319 (11)
H8S0.42880.14671.14410.038*
C9S0.4979 (4)0.1475 (3)0.9891 (3)0.0263 (10)
H9S0.60350.15701.01770.032*
C10S0.4444 (4)0.1391 (3)0.8729 (3)0.0237 (9)
H10S0.51590.14200.82230.028*
N3S0.1270 (3)0.4933 (3)0.1813 (3)0.0245 (8)
C11S0.2125 (4)0.4257 (3)0.1287 (3)0.0302 (10)
H11S0.22210.35420.15170.036*
C12S0.2882 (4)0.4540 (4)0.0421 (3)0.0336 (10)
H12S0.34860.40340.00710.040*
C13S0.2739 (4)0.5576 (4)0.0079 (3)0.0313 (10)
H13S0.32330.57920.05200.038*
C14S0.1872 (4)0.6288 (3)0.0617 (3)0.0261 (9)
H14S0.17600.70080.04030.031*
C15S0.1165 (4)0.5939 (3)0.1478 (3)0.0222 (9)
H15S0.05730.64400.18510.027*
H20.261 (4)0.083 (3)0.665 (3)0.034 (12)*
H50.166 (4)0.433 (3)0.334 (3)0.036 (13)*
H60.046 (4)0.420 (3)0.262 (3)0.014 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0195 (5)0.0159 (5)0.0153 (5)0.0021 (4)0.0067 (4)0.0090 (4)
S10.0133 (5)0.0150 (5)0.0108 (5)0.0021 (4)0.0024 (4)0.0065 (4)
S20.0141 (5)0.0152 (5)0.0120 (5)0.0059 (4)0.0002 (4)0.0045 (4)
O30.0187 (14)0.0303 (15)0.0237 (15)0.0147 (12)0.0141 (12)0.0108 (11)
O10.0245 (15)0.0209 (14)0.0180 (14)0.0067 (11)0.0053 (11)0.0089 (11)
O20.0274 (14)0.0209 (14)0.0083 (13)0.0029 (10)0.0014 (11)0.0101 (11)
O40.0137 (13)0.0261 (14)0.0191 (14)0.0106 (11)0.0027 (11)0.0014 (11)
N30.0125 (16)0.0176 (16)0.0158 (18)0.0070 (13)0.0019 (13)0.0067 (13)
N20.0136 (16)0.0164 (16)0.0066 (18)0.0049 (13)0.0016 (13)0.0037 (13)
N10.0214 (19)0.0163 (17)0.022 (2)0.0100 (14)0.0121 (16)0.0064 (15)
C30.0083 (18)0.0125 (18)0.020 (2)0.0083 (16)0.0000 (16)0.0016 (15)
C20.0046 (17)0.0105 (17)0.012 (2)0.0037 (14)0.0000 (15)0.0015 (14)
C70.0072 (18)0.0103 (17)0.011 (2)0.0013 (14)0.0008 (15)0.0012 (14)
C10.0107 (18)0.0127 (17)0.0054 (19)0.0002 (14)0.0006 (15)0.0001 (14)
C50.0070 (18)0.0113 (18)0.010 (2)0.0038 (14)0.0009 (15)0.0006 (14)
C60.0084 (18)0.0083 (17)0.016 (2)0.0009 (14)0.0062 (15)0.0008 (14)
C40.0108 (18)0.0115 (17)0.0081 (19)0.0037 (14)0.0016 (15)0.0013 (14)
N1S0.0182 (17)0.0141 (16)0.026 (2)0.0021 (14)0.0053 (15)0.0029 (13)
C1S0.020 (2)0.016 (2)0.024 (2)0.0078 (17)0.0011 (17)0.0004 (16)
C2S0.022 (2)0.018 (2)0.032 (2)0.0007 (17)0.0116 (19)0.0018 (17)
C3S0.015 (2)0.012 (2)0.060 (3)0.004 (2)0.009 (2)0.0043 (17)
C4S0.019 (2)0.026 (2)0.044 (3)0.017 (2)0.011 (2)0.0025 (18)
C5S0.028 (2)0.023 (2)0.023 (2)0.0068 (18)0.0018 (19)0.0024 (18)
N2S0.0232 (19)0.0243 (18)0.0105 (17)0.0013 (13)0.0039 (15)0.0077 (14)
C6S0.018 (2)0.021 (2)0.026 (3)0.0027 (17)0.0002 (18)0.0032 (17)
C7S0.042 (3)0.034 (2)0.021 (3)0.0019 (18)0.017 (2)0.011 (2)
C8S0.053 (3)0.025 (2)0.012 (2)0.0080 (17)0.002 (2)0.006 (2)
C9S0.027 (2)0.022 (2)0.025 (3)0.0052 (17)0.011 (2)0.0027 (18)
C10S0.024 (2)0.029 (2)0.019 (2)0.0038 (17)0.0054 (19)0.0084 (18)
N3S0.031 (2)0.0234 (18)0.0208 (19)0.0043 (14)0.0106 (15)0.0060 (15)
C11S0.038 (3)0.024 (2)0.031 (3)0.0078 (18)0.008 (2)0.0084 (19)
C12S0.036 (3)0.041 (3)0.029 (3)0.007 (2)0.016 (2)0.012 (2)
C13S0.033 (2)0.043 (3)0.019 (2)0.009 (2)0.011 (2)0.001 (2)
C14S0.033 (2)0.024 (2)0.021 (2)0.0096 (17)0.0016 (19)0.0002 (19)
C15S0.026 (2)0.020 (2)0.019 (2)0.0021 (17)0.0019 (18)0.0035 (17)
Geometric parameters (Å, º) top
Cl1—C61.730 (3)C2S—H2S0.9500
S1—O31.435 (2)C3S—C4S1.376 (6)
S1—O11.439 (2)C3S—H3S0.9500
S1—N31.613 (3)C4S—C5S1.384 (5)
S1—C71.749 (3)C4S—H4S0.9500
S2—O41.434 (2)C5S—H5S0.9500
S2—O21.443 (2)N2S—C10S1.332 (4)
S2—N11.575 (3)N2S—C6S1.340 (4)
S2—C51.785 (3)C6S—C7S1.381 (5)
N3—C31.304 (4)C6S—H6S0.9500
N2—C31.342 (4)C7S—C8S1.376 (5)
N2—C21.383 (4)C7S—H7S0.9500
N2—H20.91 (4)C8S—C9S1.377 (5)
N1—H50.85 (4)C8S—H8S0.9500
N1—H60.83 (3)C9S—C10S1.372 (5)
C3—H30.9500C9S—H9S0.9500
C2—C41.393 (4)C10S—H10S0.9500
C2—C71.398 (4)N3S—C11S1.330 (5)
C7—C11.392 (4)N3S—C15S1.338 (4)
C1—C51.381 (4)C11S—C12S1.384 (5)
C1—H10.9500C11S—H11S0.9500
C5—C61.413 (4)C12S—C13S1.381 (5)
C6—C41.368 (4)C12S—H12S0.9500
C4—H40.9500C13S—C14S1.371 (5)
N1S—C5S1.331 (5)C13S—H13S0.9500
N1S—C1S1.337 (4)C14S—C15S1.381 (5)
C1S—C2S1.380 (5)C14S—H14S0.9500
C1S—H1S0.9500C15S—H15S0.9500
C2S—C3S1.372 (5)
O3—S1—O1116.53 (15)C3S—C2S—C1S118.5 (4)
O3—S1—N3108.29 (14)C3S—C2S—H2S120.8
O1—S1—N3108.71 (14)C1S—C2S—H2S120.8
O3—S1—C7108.12 (14)C2S—C3S—C4S119.0 (4)
O1—S1—C7109.09 (14)C2S—C3S—H3S120.5
N3—S1—C7105.55 (15)C4S—C3S—H3S120.5
O4—S2—O2119.51 (14)C3S—C4S—C5S118.3 (4)
O4—S2—N1108.62 (17)C3S—C4S—H4S120.8
O2—S2—N1108.54 (16)C5S—C4S—H4S120.8
O4—S2—C5106.13 (14)N1S—C5S—C4S124.0 (4)
O2—S2—C5104.48 (14)N1S—C5S—H5S118.0
N1—S2—C5109.16 (16)C4S—C5S—H5S118.0
C3—N3—S1121.8 (2)C10S—N2S—C6S116.7 (3)
C3—N2—C2123.4 (3)N2S—C6S—C7S123.0 (4)
C3—N2—H2115 (2)N2S—C6S—H6S118.5
C2—N2—H2122 (2)C7S—C6S—H6S118.5
S2—N1—H5118 (3)C8S—C7S—C6S119.0 (4)
S2—N1—H6115 (2)C8S—C7S—H7S120.5
H5—N1—H6125 (3)C6S—C7S—H7S120.5
N3—C3—N2127.6 (3)C7S—C8S—C9S118.5 (4)
N3—C3—H3116.2C7S—C8S—H8S120.7
N2—C3—H3116.2C9S—C8S—H8S120.7
N2—C2—C4120.0 (3)C10S—C9S—C8S118.6 (4)
N2—C2—C7120.9 (3)C10S—C9S—H9S120.7
C4—C2—C7119.1 (3)C8S—C9S—H9S120.7
C1—C7—C2120.1 (3)N2S—C10S—C9S124.1 (3)
C1—C7—S1120.3 (2)N2S—C10S—H10S118.0
C2—C7—S1119.6 (2)C9S—C10S—H10S118.0
C5—C1—C7121.2 (3)C11S—N3S—C15S116.9 (3)
C5—C1—H1119.4N3S—C11S—C12S123.5 (4)
C7—C1—H1119.4N3S—C11S—H11S118.2
C1—C5—C6117.7 (3)C12S—C11S—H11S118.2
C1—C5—S2118.0 (2)C13S—C12S—C11S118.4 (4)
C6—C5—S2124.2 (2)C13S—C12S—H12S120.8
C4—C6—C5121.7 (3)C11S—C12S—H12S120.8
C4—C6—Cl1117.8 (2)C14S—C13S—C12S118.9 (3)
C5—C6—Cl1120.5 (2)C14S—C13S—H13S120.6
C6—C4—C2120.1 (3)C12S—C13S—H13S120.6
C6—C4—H4119.9C13S—C14S—C15S118.7 (3)
C2—C4—H4119.9C13S—C14S—H14S120.6
C5S—N1S—C1S116.3 (3)C15S—C14S—H14S120.6
N1S—C1S—C2S124.0 (3)N3S—C15S—C14S123.4 (3)
N1S—C1S—H1S118.0N3S—C15S—H15S118.3
C2S—C1S—H1S118.0C14S—C15S—H15S118.3
O3—S1—N3—C3104.1 (3)C1—C5—C6—C41.1 (4)
O1—S1—N3—C3128.4 (3)S2—C5—C6—C4176.0 (2)
C7—S1—N3—C311.5 (3)C1—C5—C6—Cl1178.9 (2)
S1—N3—C3—N25.9 (5)S2—C5—C6—Cl14.1 (4)
C2—N2—C3—N33.1 (5)C5—C6—C4—C20.9 (5)
C3—N2—C2—C4175.3 (3)Cl1—C6—C4—C2179.0 (2)
C3—N2—C2—C73.5 (5)N2—C2—C4—C6178.8 (3)
N2—C2—C7—C1177.9 (3)C7—C2—C4—C60.0 (4)
C4—C2—C7—C10.9 (4)C5S—N1S—C1S—C2S0.4 (5)
N2—C2—C7—S14.4 (4)N1S—C1S—C2S—C3S0.7 (5)
C4—C2—C7—S1176.8 (2)C1S—C2S—C3S—C4S1.2 (5)
O3—S1—C7—C172.7 (3)C2S—C3S—C4S—C5S1.4 (5)
O1—S1—C7—C154.9 (3)C1S—N1S—C5S—C4S0.6 (5)
N3—S1—C7—C1171.6 (2)C3S—C4S—C5S—N1S1.1 (5)
O3—S1—C7—C2105.0 (3)C10S—N2S—C6S—C7S1.1 (5)
O1—S1—C7—C2127.4 (3)N2S—C6S—C7S—C8S1.3 (6)
N3—S1—C7—C210.7 (3)C6S—C7S—C8S—C9S0.4 (6)
C2—C7—C1—C50.8 (4)C7S—C8S—C9S—C10S0.6 (5)
S1—C7—C1—C5176.9 (2)C6S—N2S—C10S—C9S0.0 (5)
C7—C1—C5—C60.2 (4)C8S—C9S—C10S—N2S0.8 (6)
C7—C1—C5—S2177.0 (2)C15S—N3S—C11S—C12S0.5 (6)
O4—S2—C5—C1117.4 (2)N3S—C11S—C12S—C13S0.4 (6)
O2—S2—C5—C19.8 (3)C11S—C12S—C13S—C14S0.8 (6)
N1—S2—C5—C1125.7 (3)C12S—C13S—C14S—C15S0.4 (6)
O4—S2—C5—C659.7 (3)C11S—N3S—C15S—C14S0.9 (5)
O2—S2—C5—C6173.2 (3)C13S—C14S—C15S—N3S0.5 (6)
N1—S2—C5—C657.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N2S0.91 (4)1.86 (4)2.774 (4)177 (4)
N1—H5···N1Si0.85 (4)2.07 (4)2.900 (4)165 (4)
N1—H6···N3S0.83 (3)2.13 (4)2.946 (4)170 (3)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H6ClN3O4S2·3C5H5N
Mr533.02
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)9.0697 (15), 11.863 (2), 11.875 (2)
α, β, γ (°)100.691 (7), 98.667 (8), 98.134 (7)
V3)1222.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.18 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14598, 4219, 2998
Rint0.085
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.103, 1.04
No. of reflections4219
No. of parameters328
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.49

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N2S0.91 (4)1.86 (4)2.774 (4)177 (4)
N1—H5···N1Si0.85 (4)2.07 (4)2.900 (4)165 (4)
N1—H6···N3S0.83 (3)2.13 (4)2.946 (4)170 (3)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk).

References

First citationDupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884–1885.  CSD CrossRef IUCr Journals Google Scholar
First citationFabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659–o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62, o2216–o2218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Johnston, A., Leech, C. K., Shankland, K., David, W. I. F. & Florence, A. J. (2007). Acta Cryst. E63, o3956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Leech, C. K., Johnston, A., Shankland, K., David, W. I. F., Shankland, N. & Florence, A. J. (2007). Acta Cryst. E63, o3685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, P., Shankland, K., Florence, A. J., Shankland, N. & Johnston, A. (2007). J. Pharm. Sci. 96, 1192–1202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007a). Acta Cryst. E63, o2422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007b). Acta Cryst. E63, o2423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J. & Kennedy, A. R. (2007). Acta Cryst. E63, o4021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J., Shankland, N., Kennedy, A. R., Shankland, K. & Price, S. L. (2007). Cryst. Growth Des. 7, 705–712.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationShankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1105-o1106
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds